前言:一篇好文章的誕生,需要你不斷地搜集資料、整理思路,本站小編為你收集了豐富的量子計算的特點主題范文,僅供參考,歡迎閱讀并收藏。
密碼鑰匙
大家都喜歡看諜戰片吧?科技含量高的諜戰片通常有破解通信密碼的情節。破解通信密碼需要獲得密碼鑰匙。
這里說的密碼鑰匙就是信息的加密方式,因為它和咱們開門用的鑰匙有相似功能,所以被稱為密碼鑰匙,簡稱密鑰。打個比方,甲想向乙傳輸“123”這段信息,先按照將每個數字都加3的方式向乙傳輸“456”,“123”就叫明文,“456”就叫密文,而每個數字都加3就是密碼鑰匙。發送者可用密碼鑰匙加密信息,接收者可用它來解密。
如果第三方沒有密碼鑰匙,又想獲得明文信息,就需要間諜活動了。間諜獲得密碼鑰匙的方法很多,有時靠騙,可以從甲或乙那兒騙來密碼鑰匙;有時靠買,間諜向甲或乙許以報酬,收買密碼鑰匙有時也能成功;有時還靠偷。
無論騙還是偷,都屬于人工方法,獲得密碼鑰匙的效率比較低。現在間諜都愿意用計算機通過計算來獲取密碼鑰匙,就是利用計算機的超強功能,尋找密文信息的變化規律,其中的規律就是加密方式。有了計算機這種機器助手來幫助間諜破解密碼,間諜們很囂張地宣稱:沒有破解不了的密碼鑰匙,破解密碼鑰匙只是個時間問題!
利用計算機破解密碼終究會成功,所以說信息安全只是某一段時間內的相對安全,而不是永久的安全。那么,有沒有永遠不會被解密的通信方式呢?有呀,它就是量子通信。
科學探索
公元前405年,雅典和斯巴達發生了戰爭。斯巴達軍隊捕獲了一名雅典送信人,從他身上除了搜出一條布滿雜亂無章的字母的腰帶之外,別無所獲。情報究竟藏在什么地方呢?斯巴達軍隊統帥萊桑德無意中把腰帶呈螺旋形纏繞在手中的劍鞘上時,奇跡出現了,原來腰帶上那些雜亂無章的字母,竟組成了一段表意清楚的文字,密碼得以破解!腰帶情報,就是世界上最早的密碼情報,具體運用方法是,通信雙方首先約定密碼解讀規則,然后通信一方將腰帶纏繞在約定長度和粗細的木棍上書寫?收信一方接到后,如不把腰帶纏繞在同樣長度和粗細的木棍上,就只能看到一些毫無規則的字母。
趣味鏈接
有人通過破解密碼顯示才能,有人通過設計密碼顯示才能。1977年,數學家李維斯特給出了一個129位數,要求把這個數分解成兩個質數的乘積,得到這個結果,就會發現隱藏的信息。其實這個129位數就是密文,分解質因數就是密碼鑰匙。李維斯特信心滿滿地宣稱,算出他的密碼鑰匙,需要好多億年。誰知17年之后,600名密碼破解愛好者動用了1600臺計算機,只用了6個月的時間就把李維斯特的密碼給破解了,獲得的信息是“挑食的禿鷹”。密碼雖然被破解了,但人們還是很佩服李維斯特:他太厲害了,得600人聯手,用1600臺計算機,花了6個月才打敗他!
量子通信是什么
傳統的通信方式都需要介質,比如寫信你得用信紙,打電話的信號得靠電磁波來傳輸。竊密者通常會侵入介質獲得通信信息,在掌握了密文信息后,再通過計算獲取密碼鑰匙,將密文破解成明文。凡是通過介質傳送信息,必定無密可言,這種破解密碼的方式通常被稱為“截獲”。
量子通信是不需要傳輸介質的,這是為什么呢?
科學家在1900年發現了量子這種微粒,進一步發現了量子糾纏現象。量子糾纏是這樣的:一對量子甲和乙,甲攜帶的信息,可以瞬間在乙身上體現出來!不架天線,不鋪電纜,信息可以在量子之間無形無影地傳輸,這事跟神話中的心靈感應似乎是一個套路呀!
是的,量子通信可以看作是神奇的心理感應術,信息的傳輸端和接收端之間不用連接實線,也不需要電磁波,信息來去很神奇。量子糾纏現象曾經被愛因斯坦淺顯地描述為:兩個物體之間,無論距離多遠,都存在相互感應信息的天然魔力。
量子通信非常神奇,且非常安全,這又是為什么呢?
量子通信的一個特點就是加密速度極快,它可以給數之不盡的每一個信息片段加一個獨立的密碼鑰匙。舉個例子來說,如果把一次通話分割成100億個信息片段來傳輸,則量子通信可以瞬間給這100億個信息片段各加各的密碼鑰匙,這種加密方式被形象地稱為“一次一密”。你可以想象,在通信過程中,信息源源不斷,加密碼鑰匙源源不斷,千變萬化,間諜要破解這么多的密碼鑰匙,簡直是比登天還難。一次一密帶來了天量密碼鑰匙,讓密碼間諜從此失去飯碗!
有人或許會說,讓計算機出場幫著計算嘛!
這主意不錯,不過告訴你吧,現在的計算機雖然有超強的計算能力,但是它們面對無窮無盡的量子通信密碼也是束手無策,算不盡呀!如果硬要一臺計算機來破解量子通信密碼,從理論上說也是可以的,但時間卻需要數億年,甚至是無限久。呵呵,計算機破解量子通信密碼,時間是無限久,其實就是破解不了的意思呀!誰等密碼能等上數億年呢?
還有,量子通信不是不需要傳輸介質嘛,所以,間諜想在半路上截獲信息的想法也破滅。
有人或許又要問了:你在半路上截不到信息,不會直接從傳送端和接收端的量子上獲取信息嗎?
嗯,這想法似乎不錯,但做法也行不通呀,因為量子還有一個特點:只要有人干擾它,想從它身上獲得信息,它立馬就改變原來的信息狀態,把真實信息提前毀掉,讓間諜一無所獲。量子這種干擾即毀信息的特點,封死了間諜想從信息發送端和接收端獲取信息的想法。如果有的間諜“不知趣”,非得要到量子那兒獲取信息,那么信息接收方和信息發送方就可以從量子自毀信息的頻率,判斷是不是有人正在搞竊密,讓間諜行為立馬現形。這么說來,身負通信使命的量子,還是通信警察呀,只要間諜一來,它立即報警,讓間諜無處遁形。
哎,在量子通信時代,間諜要么選擇遠離量子通信網絡,要么掩耳盜鈴卻被人捉,間諜成了超高危無成果的職業,沒有人能做得來了。
量子通信先靠一次一密的加密方式,把間諜淹沒在密碼鑰匙的大海里,還會用自毀信息的方式報警,讓仍舊執迷于截獲信息的間諜無處藏身,基于這兩點,量子通信就成了絕對安全的通訊方式。
科學探索
世界是運動的,但是宏觀世界的運動規律和微觀世界的運動規律并不相同。牛頓提出的物理學說解答了宏觀世界的運動規律,但牛頓的學說一拿到微觀世界來解答微觀世界的運動規律就會“失效”。這種失效促使科學家努力尋找微觀世界的運動規律,于是量子力學就產生了,量子力學是一門年輕的科學,它總共才有一百來年的歷史。
英國有所謂的物理學家提出,人的靈魂是由大腦中的量子物質形成的,當人死亡之后,大腦微管中的量子信息會離開身體進入到宇宙,如果能阻止這些量子向宇宙中散失,就可以阻止人的死亡,如果能把散失在宇宙中的大腦量子收回來,人就能死而復生。量子科學有這么玄乎嗎?人可以不死,可以死而復生,這類“量子理論”誰敢信呀!
為什么發射量子衛星
既然量子之間可以傳輸無限加密的第三者不可破解的信息,那就在地球上建設量子通信網絡就行了,為什么還要發射量子衛星呢?
這得從目前量子信息傳輸的距離來解釋這個問題。
甲量子向乙量子傳送信息,理論上它們之間心靈感應的距離可以無限遠,無論間隔多遠,信息都能由甲傳輸給乙的。但事實上,量子在自由環境里(即地球表面環境),能量會衰減,衰減雖然不影響信息傳遞,但影響我們人類對信息的辨別,你想想,甲雖然最終把信息傳遞給了乙,但信號太弱,弱到目前我們無法辨識,不也是無用嘛。
量子之間信息傳輸距離是無限的,多遠都能傳到。但量子之間保持信息可辨認的傳輸距離卻是有限的,太遠了,它們之間有“對話”,但咱們卻“聽”不清楚了。
1977年,科學家利用量子傳送信息,結果只讓信息傳送了數米遠的距離。這個距離雖然很近,但是驗證了量子傳輸信息的可能性。
隨后,量子通信在“能”的基礎上,不斷進步,傳輸距離從最初的數米,發展到了可以傳輸16千米了:2010年6月6日,中國量子通信實驗小組將信息傳輸了16千米的距離,創造了當時量子通信的新記錄。
量子通信可傳輸16千米,但仍舊不能滿足實用要求。于是在16千米的基礎上,科學家們繼續努力,要讓量子通信的距離越來越遠,可這個期望后來“破滅”了,因為科學家發現在自由環境中,量子通信距離存在一個極限,大約是100千米。100千米的傳輸距離雖然具有實用價值,但是要建設量子通信網絡,需要在地面上每隔100千米建設一個傳輸基站。眾多基站,會降低量子通訊的效率和安全性,因為信號需要不斷在明文和密文之間多次轉換接力,每個基站容易成為信息安全漏洞,所以大量建設基站支持量子通信的方案被認為不可行。
基站方案被否決之后,科學家就把建設量子通信網絡的厚望寄托于量子通信衛星身上。量子衛星可以把量子信息傳輸的距離擴大到數千千米,三顆量子衛星就能滿足在全球建立信號優良、安全無憂的量子信息通信網絡,讓信息高速安全地直達任意地方,所以說發射量子衛星是量子通信網絡建設的關鍵節點,誰擁有了量子衛星傳輸技術,誰就掌握了全球量子通信網絡建設的主動權。
中國發射的“墨子號”,是全世界發射的第一顆量子通信衛星,標志著中國將成為量子通信界的老大,在以后量子通信網絡建設進程中,中國的話語權和支配權都將是至高無上的。別的國家見咱們有了量子衛星,都急紅眼了!
全球首顆量子科學實驗衛星為什么命名為“墨子號”。墨子是我國古代偉大的科學家,被稱為“科圣”。他最早提出光線沿直線傳播的理論,設計了小孔成像實驗,奠定了光通信、量子通信的基礎。用中國古代偉大科學家的名字命名量子衛星,為的是提升我們的文化自信。
主持建造“墨子號”的潘建偉教授是我國量子科學的領頭人,1996年他到奧地利求學量子科學,導師問他的夢想是什么,他說要在中國建世界一流的量子物理實驗室。僅過了一年,他就與同事合作,宣布在實驗中實現了量子態隱形傳輸,這被公認為量子信息實驗領域的開山之作,《科學》雜志將其列為年度全球十大科技進展。這一年,潘建偉僅27歲。后來,潘建偉回國開展量子科學研究,結果理解這門科學的人太少,什么隱形傳輸,什么大變活人的,他的研究項目被稱為偽科學,本人則被誤解為騙子。今天這個“騙子”終于可以向所有人說:看,一切都是真的!
量子傳輸的不僅僅是信息
目前這個階段,中國發射的量子衛星,主要擔負安全傳輸信息的實驗任務。將來,量子衛星的任務不僅僅是傳輸信息,很有可能還會傳輸人。
什么?傳輸人!
是的,就是傳輸人。
前面我們說過,量子是微粒。可以把物體理解成是由量子組成的,也就是說物體可以分解成一個一個的量子,量子不但可以瞬間傳輸信息,而且可以瞬間傳輸量子。如果用量子傳輸信息,就叫量子通信。如果用量子傳輸量子,那么傳輸人就成為一種可能,這在魔術里叫大變活人吧。
我們用量子傳輸量子,就可以將魔術變成真實的科技項目。科學家在用量子傳輸信息的基礎上,還開始研究如何把量子傳輸信息變成量子傳輸實物,這項研究被稱為隱形傳輸。
隱形傳輸技術在科幻電影《星際旅行》中有體現:宇航員在特殊裝置中平靜地說一句:“發送我吧,蘇格蘭人!”他瞬間就被轉移到外星球了。將來,量子機器很可能把科幻電影中的神奇情景變成現實,依靠量子傳輸實物的功能將我們發射到想去的星球上去。
盡管想要達到“發送我吧”這樣的結果,我們還得等上一些年頭,但量子隱形傳輸技術,終將帶我們走進不可思議的量子傳輸情景中,很可能讓我們瞬間到達我們想到達的任意地方。量子傳輸或許將是星際旅行的終極大法――因為,身體是由量子組成的,量子能夠被瞬間傳輸,所以我們的身體,我們的生命也就可能被瞬間傳輸。
天呀,原來大變活人不只是魔術!
科學探索
關鍵詞:量子比特;量子力學;量子相干性;并行運算
0 引言
自1946年第一臺電子計算機誕生至今,共經歷了電子管、晶體管、中小規模集成電路和大規模集成電路四個時代。計算機科學日新月異,但其性能卻始終滿足不了人類日益增長的信息處理需求,且存在不可逾越的“兩個極限”。
其一,隨著傳統硅芯片集成度的提高,芯片內部晶體管數與日俱增,相反其尺寸卻越縮越小(如現在的英特爾雙核處理器采用最新45納米制造工藝,在143平方毫米內集成2.91億晶體管)。根據摩爾定律估算,20年后制造工藝將達到幾個原子級大小,甚至更小,從而導致芯片內部微觀粒子性越來越弱,相反其波動性逐漸顯著,傳統宏觀物理學定律因此不再適用,而遵循的是微觀世界煥然一新的量子力學定理。也就是說,20年后傳統計算機將達到它的“物理極限”。
其二,集成度的提高所帶來耗能與散熱的問題反過來制約著芯片集成度的規模,傳統硅芯片集成度的停滯不前將導致計算機發展的“性能極限”。如何解決其發熱問題?研究表明,芯片耗能產生于計算過程中的不可逆過程。如處理器對輸入兩串數據的異或操作而最終結果卻只有一列數據的輸出,這過程是不可逆的,根據能量守恒定律,消失的數據信號必然會產生熱量。倘若輸出時處理器能保留一串無用序列,即把不可逆轉換為可逆過程,則能從根本上解決芯片耗能問題。利用量子力學里的玄正變換把不可逆轉為可逆過程,從而引發了對量子計算的研究。
1 量子計算的基本原理
1.1 傳統計算的存儲方式
首先回顧傳統計算機的工作原理。傳統電子計算機采用比特作為信息存儲單位。從物理學角度,比特是兩態系統,它可保持其中一種可識別狀態,即“1”或者“()”。對于“1”和“0”,可利用電流的通斷或電平的高低兩種方法表示,然后可通過與非門兩種邏輯電路的組合實現加、減、乘、除和邏輯運算。如把0~0個數相加,先輸入“00”,處理后輸入“01”,兩者相“與”再輸入下個數“10”,以此類推直至處理完第n個數,即輸入一次,運算一次,n次輸入,n次運算。這種串行處理方式不可避免地制約著傳統計算機的運算速率,數據越多影響越深,單次運算的時間累積足可達到驚人的數字。例如在1994年共1600個工作站歷時8月才完成對129位(迄今最大長度)因式的分解。倘若分解位數多達1000位,據估算,即使目前最快的計算機也需耗費1025年。而遵循量子力學定理的新一代計算機利用超高速并行運算只需幾秒即可得出結果。現在讓我們打開量子計算的潘多拉魔盒,走進奇妙神秘的量子世界。
1.2 量子計算的存儲方式
量子計算的信息存儲單位是量子比特,其兩態的表示常用以下兩種方式:
(1)利用電子自旋方向。如向左自轉狀態代表“1”,向右自轉狀態代表“0”。電子的自轉方向可通過電磁波照射加以控制。
(2)利用原子的不同能級。原子有基態和激發態兩種能級,規定原子基態時為“0”,激發態時為“1”。其具體狀態可通過辨別原子光譜或核磁共振技術辨別。
量子計算在處理0~n個數相加時,采用的是并行處理方式將“00”、“01”、“10”、“11”等n個數據同時輸入處理器,并在最后做一次運算得出結果。無論有多少數據,量子計算都是同時輸入,運算一次,從而避免了傳統計算機輸入一次運算一次的耗時過程。當對海量數據進行處理時,這種并行處理方式的速率足以讓傳統計算機望塵莫及。
1.3 量子疊加態
量子計算為何能實現并行運算呢?根本原因在于量子比特具有“疊加狀態”的性質。傳統計算機每個比特只能取一種可識別的狀態“0”或“1”,而量子比特不僅可以取“0”或“1”,還可同時取“0”和“1”,即其疊加態。以此類推,n位傳統比特僅能代表2n中的某一態,而n位量子比特卻能同時表示2n個疊加態,這正是量子世界神奇之處。運算時量子計算只須對這2n個量子疊加態處理一次,這就意味著一次同時處理了2n個量子比特(同樣的操作傳統計算機需處理2n次,因此理論上量子計算工作速率可提高2n倍),從而實現了并行運算。
量子疊加態恐怕讀者一時難以接受,即使當年聰明絕頂的愛因斯坦也頗有微詞。但微觀世界到底有別于我們所處的宏觀世界,存在著既令人驚訝又不得不承認的事實,并取得了多方面驗證。以下用量子力學描述量子疊加態。
現有兩比特存儲單元,經典計算機只能存儲00,01,10,11四位二進制數,但同一時刻只能存儲其中某一位。而量子比特除了能表示“0”或“1”兩態,還可同時表示“0”和“1”的疊加態,量子力學記為:
lφ〉=al1〉+blO〉
其中ab分別表示原子處于兩態的幾率,a=0時只有“0”態,b=0時只有“1”態,ab都不為0時既可表示“0”,又可表示“1”。因此,兩位量子比特可同時表示4種狀態,即在同一時刻可存儲4個數,量子力學記為:
1.4 量子相干性
量子計算除可并行運算外,還能快速高效地并行運算,這就用到了量子的另外一個特性――量子相干性。
量子相干性是指量子之間的特殊聯系,利用它可從一個或多個量子狀態推出其它量子態。譬如兩電子發生正向碰撞,若觀測到其中一電子是向左自轉的,那么根據動量和能量守恒定律,另外一電子必是向右自轉。這兩電子間所存在的這種聯系就是量子相干性。
可以把量子相干性應用于存儲當中。若某串量子比特是彼此相干的,則可把此串量子比特視為協同運行的同一整體,對其中某一比特的處理就會影響到其它比特的運行狀態,正所謂牽一發而動全身。量子計算之所以能快速高效地運算緣歸于此。然而令人遺憾的是量子相干性很難保持,在外部環境影響下很容易丟失相干性從而導致運算錯誤。雖然采用量子糾錯碼技術可避免出錯,但其也只是發現和糾正錯誤,卻不能從根本上杜絕量子相干性的丟失。因此,到達高效量子計算時代還有一段漫長曲折之路。
2 對傳統密碼學的沖擊
密碼通信源遠流長。早在2500年前,密碼就已廣泛應用于戰爭與外交之中,當今的文學作品也多有涉獵,如漢帝賜董承的衣帶詔,文人墨客的藏頭詩,金庸筆下的蠟丸信等。隨著歷史的發展,密碼和秘密通訊備受關注,密碼學也應運而生。防與攻是一個永恒的活題,當科學家們如火如荼地研究各種加密之策時,破譯之道也得以迅速發展。
傳統理論認為,大數的因式分解是數學界的一道難題,至今也無有效的解決方案和算法。這一點在密碼學有重要應用,現在廣泛應用于互聯網,銀行和金融系統的RSA加密系統就是基于因式難分解而開發出來的。然而,在理論上包括RSA在內的任何加密算法都不是天衣無縫的,利用窮舉法可一一破解,只要衡量破解與所耗費的人力物力和時間相比是否合理。如上文提到傳統計算機需耗費1025年才能對1000位整數進行因式分解,從時間意義上講,RSA加密算法是安全的。但是,精通高速并行運算的量子計算一旦問世,縈繞人類很久的因式分解難題迎刃而解,傳統密碼學將受到前所未有的巨大沖擊。但正所謂有矛必有盾,相信屆時一套更為安全成熟的量子加密體系終會醞釀而出。
3 近期研究成果
目前量子計算的研究仍處于實驗階段,許多科學家都以極大熱忱追尋量子計算的夢想,實現方案雖不少,但以現在的科技水平和實驗條件要找到一種合適的載體存儲量子比特,并操縱和觀測其微觀量子態實在是太困難了,各界科學家歷時多年才略有所獲。
(1)1994年物理學家尼爾和艾薩克子利用丙胺酸制出一臺最為基本的量子計算機,雖然只能做一些像1+1=2這樣簡單的運算,但對量子計算的研究具有里程碑的意義。
(2)2000年8月IBM用5個原子作為處理和存儲器制造出當時最為先進的量子計算機,并以傳統計算機無法匹敵的速度完成對密碼學中周期函數的計算。
(3)2000年日本日立公司成功開發出“單電子晶體管”量子元件,它可以控制單個電子的運動,且具有體積小,功耗低的特點(比目前功耗最小的晶體管約低1000倍)。
(4)2001年IBM公司阿曼頓實驗室利用核磁共振技術建構出7位量子比特計算機,其實現思想是用離子兩個自轉狀態作為一個量子比特,用微波脈沖作為地址。但此法還不能存儲15位以上的量子單元。
(5)2003年5月《Nature》雜志發表了克服量子相關性的實驗結果,對克服退相干,實現量子加密、糾錯和傳輸在理論上起到指導作用,從此量子通信振奮人心。
(6)2004年9月,NTT物性科學研究所試制出新一代存儲量子比特的新載體――“超導磁束量子位”。它可通過微波照射大幅度提高對量子比特自由度的控制,其量子態也相對容易保持。
(一)在建筑材料方面的應用
水泥是重要的建筑材料之一。1993年,計算量子化學開始廣泛地應用于許多水泥熟料礦物和水化產物體系的研究中,解決了很多實際問題。
鈣礬石相是許多水泥品種的主要水化產物相之一,它對水泥石的強度起著關鍵作用。程新等[1,2]在假設材料的力學強度決定于化學鍵強度的前提下,研究了幾種鈣礬石相力學強度的大小差異。計算發現,含Ca鈣礬石、含Ba鈣礬石和含Sr鈣礬石的Al-O鍵級基本一致,而含Sr鈣礬石、含Ba鈣礬石中的Sr,Ba原子鍵級與Sr-O,Ba-O共價鍵級都分別大于含Ca鈣礬石中的Ca原子鍵級和Ca-O共價鍵級,由此認為,含Sr、Ba硫鋁酸鹽的膠凝強度高于硫鋁酸鈣的膠凝強度[3]。
將量子化學理論與方法引入水泥化學領域,是一門前景廣闊的研究課題,它將有助于人們直接將分子的微觀結構與宏觀性能聯系起來,也為水泥材料的設計提供了一條新的途徑[3]。
(二)在金屬及合金材料方面的應用
過渡金屬(Fe、Co、Ni)中氫雜質的超精細場和電子結構,通過量子化學計算表明,含有雜質石原子的磁矩要降低,這與實驗結果非常一致。閔新民等[4]通過量子化學方法研究了鑭系三氟化物。結果表明,在LnF3中Ln原子軌道參與成鍵的次序是:d>f>p>s,其結合能計算值與實驗值定性趨勢一致。此方法還廣泛用于金屬氧化物固體的電子結構及光譜的計算[5]。再比如說,NbO2是一個在810℃具有相變的物質(由金紅石型變成四方體心),其高溫相的NbO2的電子結構和光譜也是通過量子化學方法進行的計算和討論,并通過計算指出它和低溫NbO2及其等電子化合物VO2在性質方面存在的差異[6]。
量子化學方法因其精確度高,計算機時少而廣泛應用于材料科學中,并取得了許多有意義的結果。隨著量子化學方法的不斷完善,同時由于電子計算機的飛速發展和普及,量子化學在材料科學中的應用范圍將不斷得到拓展,將為材料科學的發展提供一條非常有意義的途徑[5]。
二、在能源研究中的應用
(一)在煤裂解的反應機理和動力學性質方面的應用
煤是重要的能源之一。近年來隨著量子化學理論的發展和量子化學計算方法以及計算技術的進步,量子化學方法對于深入探索煤的結構和反應性之間的關系成為可能。
量子化學計算在研究煤的模型分子裂解反應機理和預測反應方向方面有許多成功的例子,如低級芳香烴作為碳/碳復合材料碳前驅體熱解機理方面的研究已經取得了比較明確的研究結果。由化學知識對所研究的低級芳香烴設想可能的自由基裂解路徑,由Guassian98程序中的半經驗方法UAM1、在UHF/3-21G*水平的從頭計算方法和考慮了電子相關效應的密度泛函UB3LYP/3-21G*方法對設計路徑的熱力學和動力學進行了計算。由理論計算方法所得到的主反應路徑、熱力學變量和表觀活化能等結果與實驗數據對比有較好的一致性,對煤熱解的量子化學基礎的研究有重要意義[7]。
(二)在鋰離子電池研究中的應用
鋰離子二次電池因為具有電容量大、工作電壓高、循環壽命長、安全可靠、無記憶效應、重量輕等優點,被人們稱之為“最有前途的化學電源”,被廣泛應用于便攜式電器等小型設備,并已開始向電動汽車、軍用潛水艇、飛機、航空等領域發展。
鋰離子電池又稱搖椅型電池,電池的工作過程實際上是Li+離子在正負兩電極之間來回嵌入和脫嵌的過程。因此,深入鋰的嵌入-脫嵌機理對進一步改善鋰離子電池的性能至關重要。Ago等[8]用半經驗分子軌道法以C32H14作為模型碳結構研究了鋰原子在碳層間的插入反應。認為鋰最有可能摻雜在碳環中心的上方位置。Ago等[9]用abinitio分子軌道法對摻鋰的芳香族碳化合物的研究表明,隨著鋰含量的增加,鋰的離子性減少,預示在較高的摻鋰狀態下有可能存在一種Li-C和具有共價性的Li-Li的混合物。Satoru等[10]用分子軌道計算法,對低結晶度的炭素材料的摻鋰反應進行了研究,研究表明,鋰優先插入到石墨層間反應,然后摻雜在石墨層中不同部位里[11]。
隨著人們對材料晶體結構的進一步認識和計算機水平的更高發展,相信量子化學原理在鋰離子電池中的應用領域會更廣泛、更深入、更具指導性。
三、在生物大分子體系研究中的應用
生物大分子體系的量子化學計算一直是一個具有挑戰性的研究領域,尤其是生物大分子體系的理論研究具有重要意義。由于量子化學可以在分子、電子水平上對體系進行精細的理論研究,是其它理論研究方法所難以替代的。因此要深入理解有關酶的催化作用、基因的復制與突變、藥物與受體之間的識別與結合過程及作用方式等,都很有必要運用量子化學的方法對這些生物大分子體系進行研究。毫無疑問,這種研究可以幫助人們有目的地調控酶的催化作用,甚至可以有目的地修飾酶的結構、設計并合成人工酶;可以揭示遺傳與變異的奧秘,進而調控基因的復制與突變,使之造福于人類;可以根據藥物與受體的結合過程和作用特點設計高效低毒的新藥等等,可見運用量子化學的手段來研究生命現象是十分有意義的。
綜上所述,我們可以看出在材料、能源以及生物大分子體系研究中,量子化學發揮了重要的作用。在近十幾年來,由于電子計算機的飛速發展和普及,量子化學計算變得更加迅速和方便。可以預言,在不久的將來,量子化學將在更廣泛的領域發揮更加重要的作用。
參考文獻:
[1]程新.[學位論文].武漢:武漢工業大學材料科學與工程學院,1994
[2]程新,馮修吉.武漢工業大學學報,1995,17(4):12
[3]李北星,程新.建筑材料學報,1999,2(2):147
[4]閔新民,沈爾忠,江元生等.化學學報,1990,48(10):973
[5]程新,陳亞明.山東建材學院學報,1994,8(2):1
[6]閔新民.化學學報,1992,50(5):449
[7]王寶俊,張玉貴,秦育紅等.煤炭轉化,2003,26(1):1
[8]AgoH,NagataK,YoshizawAK,etal.Bull.Chem.Soc.Jpn.,1997,70:1717
[9]AgoH,KatoM,YaharaAK.etal.JournaloftheElectrochemicalSociety,1999,146(4):1262
[10]SatoruK,MikioW,ShinighiK.ElectrochimicaActa1998,43(21-22):3127
[11]麻明友,何則強,熊利芝等.量子化學原理在鋰離子電池研究中的應用.吉首大學學報,2006,27(3):97.
關鍵詞:共振隧穿;能級耦合;傳輸矩陣;量子阱;中間勢壘
一、引言
經典力學的理論認為,當粒子的動能小于勢壘高度時,粒子不可能從勢壘的一邊翻越勢壘到達另一邊,它會被反射回來。不過在量子力學中,我們發現一般情況下,盡管粒子的動能并不足以讓它從勢壘頂部翻越勢壘,但它們仍然有可能穿越勢壘到達勢壘的另一邊。我們把這種粒子穿越比自己動能更高的勢壘的現象稱為“隧穿效應”。
電子的隧穿效應在實際應用中有很重要的價值,它是研究半導體器件的基礎。計算隧穿電流,研究隧穿器件的伏安特性等問題的關鍵就在于如何計算電子穿越勢壘的透射系數。計算透射系數的理論重點就在于如何求解一維定態薛定諤方程。事實上,適用解析方法精確求解的一維定態薛定諤方程非常有限,相比而言用傳遞矩陣求解具有適用范圍廣,使用簡單,能夠快速精確地得到數值解等特點。
本文利用傳輸矩陣技術,對電子共振隧穿雙量子阱的情況進行了數值模擬,并且分析了中間勢壘的厚度對于能級耦合引起的透射強度和透射能級的影響。
二、模擬及結果討論
由傳輸矩陣的基本理論有如下定義,其中 為透射幾率, 為透射振幅, 為入射振幅。
我們保持兩邊勢壘厚度為2nm,勢壘高度為0.2625eV,中心勢壘寬度為6nm,勢壘高度為0.225eV,其中第一個勢阱的寬度為1.5nm,第二個勢阱寬度分別為1nm,1.25nm,1.5nm和2nm。在此基礎上進行數值模擬,得到圖1所示的透射譜結果。
由圖1可以看出,其中一個阱的峰位沒有變化,另外一個阱的峰位變化分別為0.239eV,0.221eV,0.200eV和0.171eV。隨著量子阱的阱寬變化,兩個阱的能級也會變化。當量子阱的阱寬為1.5nm時,兩個阱的能級很接近,共振隧穿現象得到增強。當兩個量子阱的阱寬完全相同時,共振達到最大。而當量子阱的阱寬繼續增大時,耦合減弱。中間勢壘的寬度變化對透射幾率有著類似的影響。
可以改變中間勢壘的厚度來研究勢壘層所起的作用。根據數值模擬的結果可以發現,當中間勢壘寬度小于3nm時,隨著勢壘厚度的減小,能級趨近于一個量子阱寬度為3nm的能級。此時中間勢壘對大量子阱的能級產生微擾。并不能把一個量子阱一分為二。否則,它們之間的耦合將會很強,應該接近1.5nm量子阱的能級。當中間勢壘層大于4nm時,系統的基態和第一激發態的能級比較接近,它們之間的耦合也比較強。當中間勢壘層達到5nm時,模擬結果顯示兩個小量子阱的阱寬相同時,透射峰的半高寬度比較大,這顯示了在基態和激發態的能級之間也存在耦合現象。否則,如果僅在兩個小阱的基態能級之間存在耦合,那么透射峰的半高寬度應該很窄。
可見,在三勢壘系統中,其透射特性受到比較復雜的能級之間耦合的影響。這其中包括兩個量子阱之間最臨近的能級之間的耦合,量子阱基態能級和激發態能級之間的耦合等等。
可以在阱中引入勢壘來調制隧穿結構的特性,改變勢壘在阱中的位置和高度來研究其對透射幾率的影響。這對于設計隧穿半導體器件具有一定的意義。在理論模擬中,控制量子阱的寬度為8nm,其勢壘高度為Al含量0.4的AlGaAs,量子阱采用GaAs材料。
下面我們研究Al含量0.2的AlGaAs的量子阱的透射特性,通過數值模擬可以發現,將勢壘加在勢阱中心后,第一共振能級與第二共振能級的耦合程度發生改變,它們的間距縮小,透射幾率幾乎達到100%。而與中心插入相比,非對稱插入后能級間距有一定程度得增大,但透射幾率顯著減小。造成這種情況的原因是,非對稱對波函數的耦合產生影響,導致透射幾率減小。同時還可以發現,中心插入勢壘的寬度對系統的透射幾率強度并無影響,電子在共振能級能夠全部透過。這是因為在勢阱中心插入勢壘后,會形成兩個能級一致的量子阱,形成共振隧穿。而不對稱插入時,如果兩個量子阱之間的能級差別不大就會形成不完全隧穿。插入勢壘的高度低于勢壘層的高度,兩個分開的量子阱限制性減弱,共振能級總是偏移向低能方向。在非對稱情況下,形成的窄量子阱的能級向高能方向漂移,形成的寬量子阱的能級則向低能方向漂移。這里要強調一點,當其他條件相同時,中心勢壘的寬度增加導致對共振能級發生改變,顯然,這是由于中心勢壘的厚度對系統能級產生影響。
我們有必要進一步理解隧穿結構中的載流子動力學過程。這就需要對載流子隧穿中心勢壘的時間進行分析。根據Choe的理論,如果兩個量子阱的能級不同,那么當粒子透射時就會產生雙峰結構,而由于能量測不準原理,就可以得到粒子穿越中心勢壘的時間。其表達式如下:
根據此原理,我們模擬了如下結構:總的量子阱厚度為10nm,兩端勢壘層厚度為2nm,中心勢壘層有1nm變化至3.5nm,所有勢壘層中的Al含量都是0.4,然后研究粒子從第一個量子阱隧穿到第二個量子阱所需的時間。
根據我們得到的透射譜結果可以發現,隨著中心勢壘的增加,能級之間的距離越來越接近。
如果從中提取出基態和第一激發態的能級,隨著中心勢壘寬度的增加,基態的能級逐漸增加。而第一激發態的能級則相反,隨著中心勢壘寬度的增加,其能級逐漸減小。這和我們前面得出的結論是吻合的,隨著中心勢壘寬度的增加,基態能級和第一激發態能級將相互靠近,因此,它們之間的耦合程度也逐漸增大。
三、 總結
經過以上分析和研究,我們得到如下結論:
(1)當中心勢壘層小于等于3nm時,中心勢壘層只能對系統能級產生微擾。而不能把一個量子阱分為兩個量子阱。
(2)當中心勢壘層大于3nm時,中心勢壘層會把一個量子阱分為兩個獨立的量子阱,但是這兩個獨立量子阱之間仍然存在波函數的耦合,同時,在我們研究的系統中還可以看到,耦合不僅存在于兩個量子阱之間,還存在于基態波函數和激發態波函數之間。
作者單位:河北省邯鄲市廣播電視大學
參考文獻
[1]Tsu R, Esaki L. Tunneling in a finite superlattice [J].Appl Phys Lett,1973,22(11): 562-564.
關鍵詞:計算機;發展史;前景展望
1 前言
計算機由機械技術向電子技術以及生物技術、智能技術的轉變,為我們的生活帶來了巨大的變化。計算機已經擁有了60年的發展歷程,共經歷了5個重要的發展階段,將在不久的未來經歷第六個發展階段。
2 計算機發展歷史
(1)電子管計算機(1946-1958年)
用陰極射線管或汞延尺線作主存儲器,外存主要使用紙帶、卡片等,程序設計主要使用機器指令或符號指令,應用鄰域主要是科學計算。
(2)晶體管計算機(1958-1964年)
主存儲器均采用磁蕊存儲器,磁鼓和磁盤開始用作主要的外存儲器,程序設計使用了更接近于人類自然語言的高級程序設計語言,計算機的應用領域也從科學計算擴展到了事務處理,工程設計等各個方面。
(3)小規模集成電路計算機(1964-1971年)
半導體存儲器逐步取代了磁芯存儲器的主存儲地位,磁盤成了不可缺少的輔助存儲器,計算機也進入了產品標準化、模塊化、系列化的發展時期,使計算機使用效率明顯提高。
(4)大規模集成電路(1972年-至今)
大規模、超大規模集成電路應用的一個直接結果是微處理器和微型計算機的誕生。微處理器自1971年誕生以來幾乎每隔二至三年就要更新換代,以高檔微處理器為核心構成的高檔微型計算機系統已達到和超過了傳統超極小型計算機水平,其運算速度可以達到每秒數億次。由于微型計算機體積小、功耗低、其性能價格比占有很大優勢,因而得到了廣泛的應用。
(5)人工智能計算機——神經計算機。
其特點是可以實現分布式聯想記憶.并能在一定程度上模擬人和動物的學習功能。它是一種有知識、會學習、能推理的計算機,具有能理解自然語言、聲音、文字和圖像的能力,并且具有說話的能力,使人機能夠用自然語言直接對話,它可以利用已有的和不斷學習到的知識,進行思維、聯想、推理,并得出結論,能解決復雜問題,具有匯集、記憶、檢索有關知識的能力。
3 計算機發展前景展望
計算機的發展將趨向超高速、超小型、并行處理和智能化。計算發展如此之快,計算機界據此總結出了“ 摩爾法則”,該法則認為每 18個月左右計算機性能就會提高一倍。因此,在未來,第六代計算機發展方向如下:
(1)分子計算機
分子計算機體積小、耗電少、運算快、存儲量大。分子計算機的運行是吸收分子晶體上以電荷形式存在的信息,并以更有效的方式進行組織排列。分子計算機的運算過程就是蛋白質分子與周圍物理化學介質的相互作用過程。轉換開關為酶,而程序則在酶合成系統本身和蛋白質的結構中極其明顯地表示出來。生物分子組成的計算機具備能在生化環境下,甚至在生物有機體中運行,并能以其它分子形式與外部環境交換。因此它將在醫療診治、遺傳追蹤和仿生工程中發揮無法替代的作用。分子芯片體積可比現在的芯片大大減小,而效率大大提高, 分子計算機完成一項運算,所需的時間僅為10 微微秒,比人的思維速度快 100 萬倍。分子計算機具有驚人的存貯容量,1立方米的DNA溶液可存儲 1 萬億億的二進制數據。分子計算機消耗的能量非常小,只有電子計算機的十億分之一。由于分子芯片的原材料是蛋白質分子,所以分子計算機既有自我修復的功能,又可直接與分子活體相聯。
(2)光子計算機
光子計算機利用光子取代電子進行數據運算、傳輸和存儲。在光子計算機中,不同波長的光代表不同的數據,這遠勝于電子計算機中通過電子“0”和“1” 狀態變化進行的二進制運算, 可以對復雜度高、計算量大的任務實現快速的并行處理。光子計算機將使運算速度在目前基礎上呈指數上升。
(3)量子計算機
量子計算機是一類遵循量子力學規律進行高速數學和邏輯運算、存儲及處理量子信息的物理裝置。量子計算機是基于量子效應基礎上開發的,它利用一種鏈狀分子聚合物的特性來表示開與關的狀態,利用激光脈沖來改變分子的狀態,使信息沿著聚合物移動,從而進行運算。量子計算機中的數據用量子位存儲。由于量子疊加效應,一個量子位可以是0或1,也可以既存儲0又存儲1。因此, 一個量子位可以存儲2個數據,同樣數量的存儲位,量子計算機的存儲量比通常計算機大許多。同時量子計算機能夠實行量子并行計算,其運算速度可能比目前計算機的 PentiumⅢ晶片快10億倍。
(4)納米計算機
納米計算機是用納米技術研發的新型高性能計算機。納米管元件尺寸在幾到幾十納米范圍, 質地堅固,有著極強的導電性, 能代替硅芯片制造計算機。“納米”是一個計量單位, 一個納米等于10-9米, 大約是氫原子直徑的10倍。納米技術是從20世紀80年代初迅速發展起來的新的前沿科研領域,最終目標是人類按照自己的意志直接操縱單個原子,制造出具有特定功能的產品。現在納米技術正從微電子機械系統起步,把傳感器、電動機和各種處理器都放在一個硅芯片上而構成一個系統。應用納米技術研制的計算機內存芯片,其體積只有數百個原子大小,相當于人的頭發絲直徑的千分之一。納米計算機不僅幾乎不需要耗費任何能源, 而且其性能要比今天的計算機強大許多倍。
(5)生物計算機[1]
20世紀80年代以來,生物工程學家對人腦、神經元和感受器的研究傾注了很大精力,以期研制出可以模擬人腦思維、低耗、高教的第六代計算機——生物計算機。用蛋白質制造的電腦芯片,存儲量可以達到普通電腦的10億倍。生物電腦元件的密度比大腦神經元的密度高100萬倍,傳遞信息的速度也比人腦思維的速度快100萬倍。
論文摘要:將量子化學原理及方法引入材料科學、能源以及生物大分子體系研究領域中無疑將從更高的理論起點來認識微觀尺度上的各種參數、性能和規律,這將對材料科學、能源以及生物大分子體系的發展有著重要的意義。
量子化學是將量子力學的原理應用到化學中而產生的一門學科,經過化學家們的努力,量子化學理論和計算方法在近幾十年來取得了很大的發展,在定性和定量地闡明許多分子、原子和電子尺度級問題上已經受到足夠的重視。目前,量子化學已被廣泛應用于化學的各個分支以及生物、醫藥、材料、環境、能源、軍事等領域,取得了豐富的理論成果,并對實際工作起到了很好的指導作用。本文僅對量子化學原理及方法在材料、能源和生物大分子體系研究領域做一簡要介紹。
一、在材料科學中的應用
(一)在建筑材料方面的應用
水泥是重要的建筑材料之一。1993年,計算量子化學開始廣泛地應用于許多水泥熟料礦物和水化產物體系的研究中,解決了很多實際問題。
鈣礬石相是許多水泥品種的主要水化產物相之一,它對水泥石的強度起著關鍵作用。程新等[1,2]在假設材料的力學強度決定于化學鍵強度的前提下,研究了幾種鈣礬石相力學強度的大小差異。計算發現,含Ca鈣礬石、含Ba鈣礬石和含Sr鈣礬石的Al-O鍵級基本一致,而含Sr鈣礬石、含Ba鈣礬石中的Sr,Ba原子鍵級與Sr-O,Ba-O共價鍵級都分別大于含Ca鈣礬石中的Ca原子鍵級和Ca-O共價鍵級,由此認為,含Sr、Ba硫鋁酸鹽的膠凝強度高于硫鋁酸鈣的膠凝強度[3]。
將量子化學理論與方法引入水泥化學領域,是一門前景廣闊的研究課題,它將有助于人們直接將分子的微觀結構與宏觀性能聯系起來,也為水泥材料的設計提供了一條新的途徑[3]。
(二)在金屬及合金材料方面的應用
過渡金屬(Fe、Co、Ni)中氫雜質的超精細場和電子結構,通過量子化學計算表明,含有雜質石原子的磁矩要降低,這與實驗結果非常一致。閔新民等[4]通過量子化學方法研究了鑭系三氟化物。結果表明,在LnF3中Ln原子軌道參與成鍵的次序是:d>f>p>s,其結合能計算值與實驗值定性趨勢一致。此方法還廣泛用于金屬氧化物固體的電子結構及光譜的計算[5]。再比如說,NbO2是一個在810℃具有相變的物質(由金紅石型變成四方體心),其高溫相的NbO2的電子結構和光譜也是通過量子化學方法進行的計算和討論,并通過計算指出它和低溫NbO2及其等電子化合物VO2在性質方面存在的差異[6]。
量子化學方法因其精確度高,計算機時少而廣泛應用于材料科學中,并取得了許多有意義的結果。隨著量子化學方法的不斷完善,同時由于電子計算機的飛速發展和普及,量子化學在材料科學中的應用范圍將不斷得到拓展,將為材料科學的發展提供一條非常有意義的途徑[5]。
二、在能源研究中的應用
(一)在煤裂解的反應機理和動力學性質方面的應用
煤是重要的能源之一。近年來隨著量子化學理論的發展和量子化學計算方法以及計算技術的進步,量子化學方法對于深入探索煤的結構和反應性之間的關系成為可能。
量子化學計算在研究煤的模型分子裂解反應機理和預測反應方向方面有許多成功的例子,如低級芳香烴作為碳/碳復合材料碳前驅體熱解機理方面的研究已經取得了比較明確的研究結果。由化學知識對所研究的低級芳香烴設想可能的自由基裂解路徑,由Guassian98程序中的半經驗方法UAM1、在UHF/3-21G*水平的從頭計算方法和考慮了電子相關效應的密度泛函UB3LYP/3-21G*方法對設計路徑的熱力學和動力學進行了計算。由理論計算方法所得到的主反應路徑、熱力學變量和表觀活化能等結果與實驗數據對比有較好的一致性,對煤熱解的量子化學基礎的研究有重要意義[7]。(二)在鋰離子電池研究中的應用
鋰離子二次電池因為具有電容量大、工作電壓高、循環壽命長、安全可靠、無記憶效應、重量輕等優點,被人們稱之為“最有前途的化學電源”,被廣泛應用于便攜式電器等小型設備,并已開始向電動汽車、軍用潛水艇、飛機、航空等領域發展。
鋰離子電池又稱搖椅型電池,電池的工作過程實際上是Li+離子在正負兩電極之間來回嵌入和脫嵌的過程。因此,深入鋰的嵌入-脫嵌機理對進一步改善鋰離子電池的性能至關重要。Ago等[8]用半經驗分子軌道法以C32H14作為模型碳結構研究了鋰原子在碳層間的插入反應。認為鋰最有可能摻雜在碳環中心的上方位置。Ago等[9]用abinitio分子軌道法對摻鋰的芳香族碳化合物的研究表明,隨著鋰含量的增加,鋰的離子性減少,預示在較高的摻鋰狀態下有可能存在一種Li-C和具有共價性的Li-Li的混合物。Satoru等[10]用分子軌道計算法,對低結晶度的炭素材料的摻鋰反應進行了研究,研究表明,鋰優先插入到石墨層間反應,然后摻雜在石墨層中不同部位里[11]。
隨著人們對材料晶體結構的進一步認識和計算機水平的更高發展,相信量子化學原理在鋰離子電池中的應用領域會更廣泛、更深入、更具指導性。
三、在生物大分子體系研究中的應用
生物大分子體系的量子化學計算一直是一個具有挑戰性的研究領域,尤其是生物大分子體系的理論研究具有重要意義。由于量子化學可以在分子、電子水平上對體系進行精細的理論研究,是其它理論研究方法所難以替代的。因此要深入理解有關酶的催化作用、基因的復制與突變、藥物與受體之間的識別與結合過程及作用方式等,都很有必要運用量子化學的方法對這些生物大分子體系進行研究。毫無疑問,這種研究可以幫助人們有目的地調控酶的催化作用,甚至可以有目的地修飾酶的結構、設計并合成人工酶;可以揭示遺傳與變異的奧秘,進而調控基因的復制與突變,使之造福于人類;可以根據藥物與受體的結合過程和作用特點設計高效低毒的新藥等等,可見運用量子化學的手段來研究生命現象是十分有意義的。
綜上所述,我們可以看出在材料、能源以及生物大分子體系研究中,量子化學發揮了重要的作用。在近十幾年來,由于電子計算機的飛速發展和普及,量子化學計算變得更加迅速和方便。可以預言,在不久的將來,量子化學將在更廣泛的領域發揮更加重要的作用。
參考文獻:
[1]程新.[學位論文].武漢:武漢工業大學材料科學與工程學院,1994
[2]程新,馮修吉.武漢工業大學學報,1995,17(4):12
[3]李北星,程新.建筑材料學報,1999,2(2):147
[4]閔新民,沈爾忠,江元生等.化學學報,1990,48(10):973
[5]程新,陳亞明.山東建材學院學報,1994,8(2):1
[6]閔新民.化學學報,1992,50(5):449
[7]王寶俊,張玉貴,秦育紅等.煤炭轉化,2003,26(1):1
[8]AgoH,NagataK,YoshizawAK,etal.Bull.Chem.Soc.Jpn.,1997,70:1717
[9]AgoH,KatoM,YaharaAK.etal.JournaloftheElectrochemicalSociety,1999,146(4):1262
1.1計算機科學技術在生活中應用廣泛
在這個信息化時代,計算機網絡作為人們社會生活的重要部分,已經進入千家萬戶。人們不用出門就可以通過計算機了解國內外新聞、天氣預報資訊、股市行情、世界地圖、收發電子郵件、檢索信息等;不用逛街就可以通過互聯網中的購物網站買到喜歡的東西;通過計算機可以與相隔較遠的朋友在線聊天、視頻聊天等,加強人們之間的交流和溝通,促進友誼;人們可以通過計算機網絡訂購飛機票、火車票等,節省排隊時間;教師可以通過計算機科學技術實現對學生的在線授課,更及時、更方便;動漫工作者可以使用計算機科學技術制作動漫;政府機關也可以通過計算機科學技術建立城市網站,及時了解市民反映的問題,通過計算機與各個行業的工作人員在線交流;很多企業使用計算機來處理大量數據和信息,代替傳統的人工處理,提高工作效率。計算機科學技術潛移默化的影響著人們的生產、工作和學習。
1.2計算機科學技術更加智能化和專業化
計算機科學技術的快速發展和廣泛應用,推動了集成電路、微電子和半導體晶體管的發展,計算機科學技術更加智能化和專業化。計算機能根據使用對象的不同個體需要進行改裝、更新,對于有更高需求的用戶可以專門定做計算機,用戶可以根據使用環境的不同選擇臺式計算機、筆記本計算機、掌上電腦和平板電腦等。計算機科學技術在其他特殊領域也能發揮自己的優勢,如智能化家用電器和智能手機,家庭式網絡分布系統代替了傳統的單機操作系統,滿足人們的生活需求。
1.3計算機的微處理器和納米技術
微處理器能提高計算機的使用性能,縮小傳統處理器芯片中的晶體管線寬和尺寸。利用光刻技術,波長更短的曝光光源經過掩膜的曝光,將晶體管在硅片上制作的更精巧,將晶體管導線制作的更細小。計算機科學技術的快速發展使計算機運算速度更快,體積更微型,操作更智能,傳統的電子元件不能適應計算機的發展。納米技術是一種用分子射程物質和單個原子的毫微技術,可以研究0.1~100納米范圍內的材料應用和性質。計算機科學技術中利用納米技術,可以使計算機尺寸變小,解決運算速度和集成度的問題。
2計算機科學技術的未來發展
現如今,計算機科學技術的應用越來越廣,人們對計算機科學技術的要求越來越高,促使數學家和計算機學家們不斷研究計算機科學技術,使計算機科學技術在各個領域、各個行業發揮更大的作用,滿足人們的不同需求。下面從DNA生物計算機、光計算機和量子計算機三方面來探究計算機科學技術的發展前景。
2.1DNA生物計算機DNA生物計算機用生物蛋白質芯片代替傳統的半導體硅芯片。1994年,美國科學家阿德勒曼率先提出關于生物計算機的設想。在計算機運算數據時,將生物DNA堿基序列作為信息編碼載體,運用分子生物學技術和控制酶,改變DNA堿基序列,從而反映信息,處理數據。這一設想增加了計算機操作方式,改變了傳統的、單一的物理操作性質,拓寬了人們對計算機的了解視野。DNA生物計算機元件密度比大腦神經元的密度高100萬倍,信息數據的傳遞速度也比人腦思維快100萬倍,生物計算機的蛋白質芯片存儲量是傳統計算機的10億倍。2001年,以色列科學家研制出世界上第一臺DNA生物計算機,體積較小,僅有一滴水的體積。2013年,英國生物信息研究院的科學家們使用DNA堿基序列對文學家莎士比亞154首作品的音樂文件格式和相關照片進行編制,增加了儲存密度,使儲存密度達到2.2PB/克(1024TB=1PB),提高了人們對信息儲存的認識,這一重大突破使生物計算機的設想有望成為現實。
2.2光信號和光子計算機
光子計算機是一種由光子信號進行信息處理、信息存儲、邏輯操作和數字運算的新型計算機。集成光路是光子計算機的基本構成部件,包括核鏡、透鏡和激光器。光子計算機和傳統計算機相比較,有以下幾點好處:
(1)光計算機的光子互聯芯片集成密度更高。在高密度下,光子可以不受量子效應的影響,在自由空間將光子互聯,就能提高芯片的集成密度。
(2)光子沒有質量,不受介質干擾,可以在各種介質和真空中傳播。
(3)光自身不帶電荷,是一種電磁波,可以在自由空間中相互交叉傳播,傳播時各自不發生干擾。
(4)光子在導線中的傳播速度更快,是電子傳播速度的1000倍,光計算機的運算速度比傳統計算機更快。20世紀50年代末,科學家提出光計算機的設想,即利用光速完成計算機運算和儲存等工作。與芯片計算機相比較,光子計算機可以提高計算機運行速度。1896年,戴維•米勒首先研制出光開關,體型較小。1990年,貝爾實驗室的光計算機工作計劃正式開啟。根據元器件的不同,光子計算機可以分為全光學型計算機和光電混合型計算機。全光學型計算機比光電混合型計算機運算速度快,還可以對手勢、圖形、語言等進行合成和識別。貝爾實驗室已經成功研制出光電混合型計算機,采用的是混合型元器件。研發制作全光學型計算機的重要工作就是研制晶體管,這種晶體管與現存的光學“晶體管”不同,它能用一條光線控制另一條光線。現存的光學“晶體管”體積較大較笨拙,滿足不了全光學型計算機的研發要求。
2.3量子理論計算機
量子計算機將處于量子狀態的原子作為計算機CPU和內存,處于量子狀態的原子在同一時間內能處于不同位置,根據這一特性可以提高計算機處理信息的精確度,提高處理數據的運算速度,有利于數據儲存。量子計算機處理信息時的基本數據單元是量子比特,取代了傳統的“1”和“0”,具有極強的運算能力,運算速度比傳統計算機快10億倍。中國和美國的科學家們在實驗室里成功實現了同時對多個量子比特進行操作,為制造量子計算機提供了可能。相信在科學技術的不斷發展和世界各國的科學家們共同努力下,量子計算機會成為現實。
3結束語
引言:
量子通信是指利用量子糾纏效應進行信息傳遞的一種新型的通訊方式。這一新型通信技術是伴隨著通信技術的不斷發展和物理學領域的不斷研究而發展起來的,是近二十年發展起來的新型交叉學科,是量子論和信息論相結合的新的研究領域。近年來這門學科已逐步從理論走向實驗,以其特有的高效性和安全性等特點而被軍事等領域廣泛研究應用,并向實用化發展。同時,隨著社會科技和經濟的不斷發展,普通民眾對信息傳輸的要求也日益提高,對信息傳輸的穩定性、安全性要求也不斷提高,因此也急需這一技術來作為對現有通信手段的補充和優化,以不斷提高信息傳輸的質量。這種無論是來自軍事等特殊領域還是來自普通民眾等普通領域對信息傳輸的高要求都促使著量子通信技術不斷研究與發展,以滿足人們不斷嚴苛的通信需求。
一、量子通信的發展概述
量子通信技術是在量子力學的基礎上發展起來的。量子力學誕生于1926年,是人類對微觀世界加以認識的理論基礎之一。量子力學和相對論之間的不相容性在1935年被愛因斯坦、波多爾基斯和羅森論證后,約翰?貝爾于1964年提出貝爾理論,阿斯派克等人于1982年證明了超光速響應的存在。在這一基礎上,美國科學家貝內特于1993年首次提出了量子通信的概念。這一概念的提出,使愛因斯坦的量子糾纏效益開始真正發揮其威力。
自量子通信概念提出以后,6位來自不同國家的科學家,基于量子糾纏理論,提出了利用經典與量子相結合的方法實現量子隱形傳送的方案,這是量子通信最初的基本方案。量子隱形傳態不僅在物理學領域對人們認識與揭示自然界的神秘規律具有重要意義,而且可以用量子態作為信息載體,通過量子態的傳送完成大容量信息的傳輸,實現原則上不可破譯的量子保密通信。
1997年在奧地利留學的中國青年學者潘建偉與荷蘭學者波密斯特等人合作,首次實現了未知量子態的遠程傳輸。這是國際上首次在實驗上成功地將一個量子態從甲地的光子傳送到乙地的光子上。實驗中傳輸的只是表達量子信息的“狀態”,作為信息載體的光子本身并不被傳輸。此后經過二十多年的發展,量子通信這門學科已逐步從理論走向實驗,并向實用化發展,主要涉及的領域包括:量子密碼通信、量子遠程傳態和量子密集編碼等。
二、量子通信技術簡介
量子通信即指利用量子糾纏效應進行信息傳遞的一種新型的通訊方式。量子是不可分的最小能量單位,“光量子”即為光的最小能量單位。量子通信的理論基礎是量子糾纏。在量子世界中,存在著一種“糾纏”效應,所謂量子糾纏指的是兩個或多個量子系統之間存在非定域、非經典的強關聯。這種“糾纏”效應能夠在兩個完全相同的某量子態粒子之間建立某種聯系,當其中一個的狀態發生變化時,另一個也會發生相同的變化,而且這種變化與時間和空間無關。另外由于對粒子的任何測量都會導致其量子態的變化,所以同時這種變化時不可能被第三者所知獲的。利用量子的糾纏效應,我們可以進行絕密和瞬時的通信。因此具有極大的研究價值。
量子密碼通信原理是基于“海森堡測不準”原理的發展的。在量子物理學中“海森堡測不準”原理表明,如果人們開始準確了解到基本粒子動量的變化,那么也就開始喪失對該粒子位置變化的認識。所以如果使用光去觀察基本粒子,照亮粒子的光的行為都會使之改變路線,從而無法發現該粒子的實際位置。因此對傳輸光子線路的竊聽會破壞原通訊路線之間的相互聯系,通訊會被終端。另外還有“單量子不可復制”定理,這是上述原理的推論,是指在不知道量子狀態的情況下復制單個量子是不可能的,因為要復制單個量子必須先做測量,而測量必然會改變量子狀態。根據這兩個原理,即使量子密碼不幸被獲取,也會因測量過程中對量子狀態的改變而得到一些幾乎無意義的信息。
量子遠程傳態是經由經典通道和量子通道傳送未知量子態。通俗來講就是將甲地的某一粒子的未知量子態在乙地的另一粒子上還原出來。因量子力學的不確定原理和量子態不可克隆原理,限制人們將原量子態的所有信息精確地全部提取出來,因此必須將原量子態的所有信息分為經典信息和量子信息兩部分,它們分別由經典通道和量子通道送到乙地,根據這些信息,在乙地構造出原量子態的全貌。但這一過程并不傳輸任何的能量或物質,只是傳輸一種量子態。
量子密集編碼是用量子通道傳送經典比特,即使用量子糾纏現象可以實現只傳送一個量子比特,而傳送兩個比特的經典信息。具體方法是信息的傳送者(Alice)和接受者(Bob)各擁有處于最大糾纏態中的一個粒子,Alice可以對她手中的粒子施加四種可能的幺正變換以編碼兩個比特的經典信息,由于兩個粒子處于糾纏態,對一個粒子的任何操作都會對另一個粒子產生影響,引起另一個粒子的態發生相應的變化。Alice對它的糾纏粒子施加幺正變換后,兩系統處于四個Bell基態之一,為了使Bob能讀出Alice編碼的信息,Alice必須再把她的粒子傳送給Bob,Bob再對兩個粒子實施聯合Bell 基測量,測量結果可使Bob提出2比特的經典信息,在這過程中,Alice僅傳送給Bob一個粒子,但卻能成功的傳送2比特的經典信息,這就是所謂的“密集編碼”。
三、量子通信技術的發展前景
量子通信技術依托于發達的現代信息技術和先進的量子技術而發展起來的,以其獨特的優勢而被廣泛關注。與傳統通信技術相比較,量子通信具有抗干擾力強、保密性高、傳輸速度快等優點。因此,它的發展應用前景很廣闊。一方面,在國家政府和軍事領域,由于其保密性極高,幾乎不可能被敵方破譯,且這種量子通信技術能夠抵御未來量子計算機技術帶來的威脅,因此會被不斷研究和應用。另一方面,在民用通信技術領域,早在2009年9月,中國科技大學組建了世界上首個5節點的全通型量子通信網絡,首次實現了實時語音量子保密通信。“城域量子通信網絡”使得城市范圍的安全量子通信網絡成為現實。因此,量子通信在未來的民用領域也將被廣泛研究應用。
結語
量子通信是通信技術的又一次劃時代革命,與目前采用的傳統通信技術相比,量子通信在保密性、通信容量、通信時效等方面都具有十分明顯的優勢,是未來通信發展的主要方向。雖然量子通信有著廣闊的應用前景,但在單元技術和理論方面還有許多需要解決的問題。在信息產業作為國民經濟重要組成部分的今天,需要在量子通信這一領域繼續加大投入和研究力度,為進入量子通信時代打下堅實的基礎,不斷服務于現代人類的發展需求。
關鍵詞半導體材料量子線量子點材料光子晶體
1半導體材料的戰略地位
上世紀中葉,單晶硅和半導體晶體管的發明及其硅集成電路的研制成功,導致了電子工業革命;上世紀70年代初石英光導纖維材料和GaAs激光器的發明,促進了光纖通信技術迅速發展并逐步形成了高新技術產業,使人類進入了信息時代。超晶格概念的提出及其半導體超晶格、量子阱材料的研制成功,徹底改變了光電器件的設計思想,使半導體器件的設計與制造從“雜質工程”發展到“能帶工程”。納米科學技術的發展和應用,將使人類能從原子、分子或納米尺度水平上控制、操縱和制造功能強大的新型器件與電路,必將深刻地影響著世界的政治、經濟格局和軍事對抗的形式,徹底改變人們的生活方式。
2幾種主要半導體材料的發展現狀與趨勢
2.1硅材料
從提高硅集成電路成品率,降低成本看,增大直拉硅(CZ-Si)單晶的直徑和減小微缺陷的密度仍是今后CZ-Si發展的總趨勢。目前直徑為8英寸(200mm)的Si單晶已實現大規模工業生產,基于直徑為12英寸(300mm)硅片的集成電路(IC‘s)技術正處在由實驗室向工業生產轉變中。目前300mm,0.18μm工藝的硅ULSI生產線已經投入生產,300mm,0.13μm工藝生產線也將在2003年完成評估。18英寸重達414公斤的硅單晶和18英寸的硅園片已在實驗室研制成功,直徑27英寸硅單晶研制也正在積極籌劃中。
從進一步提高硅IC‘S的速度和集成度看,研制適合于硅深亞微米乃至納米工藝所需的大直徑硅外延片會成為硅材料發展的主流。另外,SOI材料,包括智能剝離(Smartcut)和SIMOX材料等也發展很快。目前,直徑8英寸的硅外延片和SOI材料已研制成功,更大尺寸的片材也在開發中。
理論分析指出30nm左右將是硅MOS集成電路線寬的“極限”尺寸。這不僅是指量子尺寸效應對現有器件特性影響所帶來的物理限制和光刻技術的限制問題,更重要的是將受硅、SiO2自身性質的限制。盡管人們正在積極尋找高K介電絕緣材料(如用Si3N4等來替代SiO2),低K介電互連材料,用Cu代替Al引線以及采用系統集成芯片技術等來提高ULSI的集成度、運算速度和功能,但硅將最終難以滿足人類不斷的對更大信息量需求。為此,人們除尋求基于全新原理的量子計算和DNA生物計算等之外,還把目光放在以GaAs、InP為基的化合物半導體材料,特別是二維超晶格、量子阱,一維量子線與零維量子點材料和可與硅平面工藝兼容GeSi合金材料等,這也是目前半導體材料研發的重點。
2.2GaAs和InP單晶材料
GaAs和InP與硅不同,它們都是直接帶隙材料,具有電子飽和漂移速度高,耐高溫,抗輻照等特點;在超高速、超高頻、低功耗、低噪音器件和電路,特別在光電子器件和光電集成方面占有獨特的優勢。
目前,世界GaAs單晶的總年產量已超過200噸,其中以低位錯密度的垂直梯度凝固法(VGF)和水平(HB)方法生長的2-3英寸的導電GaAs襯底材料為主;近年來,為滿足高速移動通信的迫切需求,大直徑(4,6和8英寸)的SI-GaAs發展很快。美國莫托羅拉公司正在籌建6英寸的SI-GaAs集成電路生產線。InP具有比GaAs更優越的高頻性能,發展的速度更快,但研制直徑3英寸以上大直徑的InP單晶的關鍵技術尚未完全突破,價格居高不下。
GaAs和InP單晶的發展趨勢是:
(1)。增大晶體直徑,目前4英寸的SI-GaAs已用于生產,預計本世紀初的頭幾年直徑為6英寸的SI-GaAs也將投入工業應用。
(2)。提高材料的電學和光學微區均勻性。
(3)。降低單晶的缺陷密度,特別是位錯。
(4)。GaAs和InP單晶的VGF生長技術發展很快,很有可能成為主流技術。
2.3半導體超晶格、量子阱材料
半導體超薄層微結構材料是基于先進生長技術(MBE,MOCVD)的新一代人工構造材料。它以全新的概念改變著光電子和微電子器件的設計思想,出現了“電學和光學特性可剪裁”為特征的新范疇,是新一代固態量子器件的基礎材料。
(1)Ⅲ-V族超晶格、量子阱材料。
GaAIAs/GaAs,GaInAs/GaAs,AIGaInP/GaAs;GalnAs/InP,AlInAs/InP,InGaAsP/InP等GaAs、InP基晶格匹配和應變補償材料體系已發展得相當成熟,已成功地用來制造超高速,超高頻微電子器件和單片集成電路。高電子遷移率晶體管(HEMT),贗配高電子遷移率晶體管(P-HEMT)器件最好水平已達fmax=600GHz,輸出功率58mW,功率增益6.4db;雙異質結雙極晶體管(HBT)的最高頻率fmax也已高達500GHz,HEMT邏輯電路研制也發展很快。基于上述材料體系的光通信用1.3μm和1.5μm的量子阱激光器和探測器,紅、黃、橙光發光二極管和紅光激光器以及大功率半導體量子阱激光器已商品化;表面光發射器件和光雙穩器件等也已達到或接近達到實用化水平。目前,研制高質量的1.5μm分布反饋(DFB)激光器和電吸收(EA)調制器單片集成InP基多量子阱材料和超高速驅動電路所需的低維結構材料是解決光纖通信瓶頸問題的關鍵,在實驗室西門子公司已完成了80×40Gbps傳輸40km的實驗。另外,用于制造準連續兆瓦級大功率激光陣列的高質量量子阱材料也受到人們的重視。
雖然常規量子阱結構端面發射激光器是目前光電子領域占統治地位的有源器件,但由于其有源區極薄(~0.01μm)端面光電災變損傷,大電流電熱燒毀和光束質量差一直是此類激光器的性能改善和功率提高的難題。采用多有源區量子級聯耦合是解決此難題的有效途徑之一。我國早在1999年,就研制成功980nmInGaAs帶間量子級聯激光器,輸出功率達5W以上;2000年初,法國湯姆遜公司又報道了單個激光器準連續輸出功率超過10瓦好結果。最近,我國的科研工作者又提出并開展了多有源區縱向光耦合垂直腔面發射激光器研究,這是一種具有高增益、極低閾值、高功率和高光束質量的新型激光器,在未來光通信、光互聯與光電信息處理方面有著良好的應用前景。
為克服PN結半導體激光器的能隙對激光器波長范圍的限制,1994年美國貝爾實驗室發明了基于量子阱內子帶躍遷和阱間共振隧穿的量子級聯激光器,突破了半導體能隙對波長的限制。自從1994年InGaAs/InAIAs/InP量子級聯激光器(QCLs)發明以來,Bell實驗室等的科學家,在過去的7年多的時間里,QCLs在向大功率、高溫和單膜工作等研究方面取得了顯著的進展。2001年瑞士Neuchatel大學的科學家采用雙聲子共振和三量子阱有源區結構使波長為9.1μm的QCLs的工作溫度高達312K,連續輸出功率3mW.量子級聯激光器的工作波長已覆蓋近紅外到遠紅外波段(3-87μm),并在光通信、超高分辨光譜、超高靈敏氣體傳感器、高速調制器和無線光學連接等方面顯示出重要的應用前景。中科院上海微系統和信息技術研究所于1999年研制成功120K5μm和250K8μm的量子級聯激光器;中科院半導體研究所于2000年又研制成功3.7μm室溫準連續應變補償量子級聯激光器,使我國成為能研制這類高質量激光器材料為數不多的幾個國家之一。
目前,Ⅲ-V族超晶格、量子阱材料作為超薄層微結構材料發展的主流方向,正從直徑3英寸向4英寸過渡;生產型的MBE和M0CVD設備已研制成功并投入使用,每臺年生產能力可高達3.75×104片4英寸或1.5×104片6英寸。英國卡迪夫的MOCVD中心,法國的PicogigaMBE基地,美國的QED公司,Motorola公司,日本的富士通,NTT,索尼等都有這種外延材料出售。生產型MBE和MOCVD設備的成熟與應用,必然促進襯底材料設備和材料評價技術的發展。
(2)硅基應變異質結構材料。
硅基光、電器件集成一直是人們所追求的目標。但由于硅是間接帶隙,如何提高硅基材料發光效率就成為一個亟待解決的問題。雖經多年研究,但進展緩慢。人們目前正致力于探索硅基納米材料(納米Si/SiO2),硅基SiGeC體系的Si1-yCy/Si1-xGex低維結構,Ge/Si量子點和量子點超晶格材料,Si/SiC量子點材料,GaN/BP/Si以及GaN/Si材料。最近,在GaN/Si上成功地研制出LED發光器件和有關納米硅的受激放大現象的報道,使人們看到了一線希望。
另一方面,GeSi/Si應變層超晶格材料,因其在新一代移動通信上的重要應用前景,而成為目前硅基材料研究的主流。Si/GeSiMODFET和MOSFET的最高截止頻率已達200GHz,HBT最高振蕩頻率為160GHz,噪音在10GHz下為0.9db,其性能可與GaAs器件相媲美。
盡管GaAs/Si和InP/Si是實現光電子集成理想的材料體系,但由于晶格失配和熱膨脹系數等不同造成的高密度失配位錯而導致器件性能退化和失效,防礙著它的使用化。最近,Motolora等公司宣稱,他們在12英寸的硅襯底上,用鈦酸鍶作協變層(柔性層),成功的生長了器件級的GaAs外延薄膜,取得了突破性的進展。
2.4一維量子線、零維量子點半導體微結構材料
基于量子尺寸效應、量子干涉效應,量子隧穿效應和庫侖阻效應以及非線性光學效應等的低維半導體材料是一種人工構造(通過能帶工程實施)的新型半導體材料,是新一代微電子、光電子器件和電路的基礎。它的發展與應用,極有可能觸發新的技術革命。
目前低維半導體材料生長與制備主要集中在幾個比較成熟的材料體系上,如GaAlAs/GaAs,In(Ga)As/GaAs,InGaAs/InAlAs/GaAs,InGaAs/InP,In(Ga)As/InAlAs/InP,InGaAsP/InAlAs/InP以及GeSi/Si等,并在納米微電子和光電子研制方面取得了重大進展。俄羅斯約飛技術物理所MBE小組,柏林的俄德聯合研制小組和中科院半導體所半導體材料科學重點實驗室的MBE小組等研制成功的In(Ga)As/GaAs高功率量子點激光器,工作波長lμm左右,單管室溫連續輸出功率高達3.6~4W.特別應當指出的是我國上述的MBE小組,2001年通過在高功率量子點激光器的有源區材料結構中引入應力緩解層,抑制了缺陷和位錯的產生,提高了量子點激光器的工作壽命,室溫下連續輸出功率為1W時工作壽命超過5000小時,這是大功率激光器的一個關鍵參數,至今未見國外報道。
-
半導體材料研究的新進展
在單電子晶體管和單電子存貯器及其電路的研制方面也獲得了重大進展,1994年日本NTT就研制成功溝道長度為30nm納米單電子晶體管,并在150K觀察到柵控源-漏電流振蕩;1997年美國又報道了可在室溫工作的單電子開關器件,1998年Yauo等人采用0.25微米工藝技術實現了128Mb的單電子存貯器原型樣機的制造,這是在單電子器件在高密度存貯電路的應用方面邁出的關鍵一步。目前,基于量子點的自適應網絡計算機,單光子源和應用于量子計算的量子比特的構建等方面的研究也正在進行中。
與半導體超晶格和量子點結構的生長制備相比,高度有序的半導體量子線的制備技術難度較大。中科院半導體所半導體材料科學重點實驗室的MBE小組,在繼利用MBE技術和SK生長模式,成功地制備了高空間有序的InAs/InAI(Ga)As/InP的量子線和量子線超晶格結構的基礎上,對InAs/InAlAs量子線超晶格的空間自對準(垂直或斜對準)的物理起因和生長控制進行了研究,取得了較大進展。
王中林教授領導的喬治亞理工大學的材料科學與工程系和化學與生物化學系的研究小組,基于無催化劑、控制生長條件的氧化物粉末的熱蒸發技術,成功地合成了諸如ZnO、SnO2、In2O3和Ga2O3等一系列半導體氧化物納米帶,它們與具有圓柱對稱截面的中空納米管或納米線不同,這些原生的納米帶呈現出高純、結構均勻和單晶體,幾乎無缺陷和位錯;納米線呈矩形截面,典型的寬度為20-300nm,寬厚比為5-10,長度可達數毫米。這種半導體氧化物納米帶是一個理想的材料體系,可以用來研究載流子維度受限的輸運現象和基于它的功能器件制造。香港城市大學李述湯教授和瑞典隆德大學固體物理系納米中心的LarsSamuelson教授領導的小組,分別在SiO2/Si和InAs/InP半導體量子線超晶格結構的生長制各方面也取得了重要進展。
低維半導體結構制備的方法很多,主要有:微結構材料生長和精細加工工藝相結合的方法,應變自組裝量子線、量子點材料生長技術,圖形化襯底和不同取向晶面選擇生長技術,單原子操縱和加工技術,納米結構的輻照制備技術,及其在沸石的籠子中、納米碳管和溶液中等通過物理或化學方法制備量子點和量子線的技術等。目前發展的主要趨勢是尋找原子級無損傷加工方法和納米結構的應變自組裝可控生長技術,以求獲得大小、形狀均勻、密度可控的無缺陷納米結構。
2.5寬帶隙半導體材料
寬帶隙半導體材主要指的是金剛石,III族氮化物,碳化硅,立方氮化硼以及氧化物(ZnO等)及固溶體等,特別是SiC、GaN和金剛石薄膜等材料,因具有高熱導率、高電子飽和漂移速度和大臨界擊穿電壓等特點,成為研制高頻大功率、耐高溫、抗輻照半導體微電子器件和電路的理想材料;在通信、汽車、航空、航天、石油開采以及國防等方面有著廣泛的應用前景。另外,III族氮化物也是很好的光電子材料,在藍、綠光發光二極管(LED)和紫、藍、綠光激光器(LD)以及紫外探測器等應用方面也顯示了廣泛的應用前景。隨著1993年GaN材料的P型摻雜突破,GaN基材料成為藍綠光發光材料的研究熱點。目前,GaN基藍綠光發光二極管己商品化,GaN基LD也有商品出售,最大輸出功率為0.5W.在微電子器件研制方面,GaN基FET的最高工作頻率(fmax)已達140GHz,fT=67GHz,跨導為260ms/mm;HEMT器件也相繼問世,發展很快。此外,256×256GaN基紫外光電焦平面陣列探測器也已研制成功。特別值得提出的是,日本Sumitomo電子工業有限公司2000年宣稱,他們采用熱力學方法已研制成功2英寸GaN單晶材料,這將有力的推動藍光激光器和GaN基電子器件的發展。另外,近年來具有反常帶隙彎曲的窄禁帶InAsN,InGaAsN,GaNP和GaNAsP材料的研制也受到了重視,這是因為它們在長波長光通信用高T0光源和太陽能電池等方面顯示了重要應用前景。
以Cree公司為代表的體SiC單晶的研制已取得突破性進展,2英寸的4H和6HSiC單晶與外延片,以及3英寸的4HSiC單晶己有商品出售;以SiC為GaN基材料襯低的藍綠光LED業已上市,并參于與以藍寶石為襯低的GaN基發光器件的竟爭。其他SiC相關高溫器件的研制也取得了長足的進步。目前存在的主要問題是材料中的缺陷密度高,且價格昂貴。
II-VI族蘭綠光材料研制在徘徊了近30年后,于1990年美國3M公司成功地解決了II-VI族的P型摻雜難點而得到迅速發展。1991年3M公司利用MBE技術率先宣布了電注入(Zn,Cd)Se/ZnSe蘭光激光器在77K(495nm)脈沖輸出功率100mW的消息,開始了II-VI族蘭綠光半導體激光(材料)器件研制的。經過多年的努力,目前ZnSe基II-VI族蘭綠光激光器的壽命雖已超過1000小時,但離使用差距尚大,加之GaN基材料的迅速發展和應用,使II-VI族蘭綠光材料研制步伐有所變緩。提高有源區材料的完整性,特別是要降低由非化學配比導致的點缺陷密度和進一步降低失配位錯和解決歐姆接觸等問題,仍是該材料體系走向實用化前必須要解決的問題。
寬帶隙半導體異質結構材料往往也是典型的大失配異質結構材料,所謂大失配異質結構材料是指晶格常數、熱膨脹系數或晶體的對稱性等物理參數有較大差異的材料體系,如GaN/藍寶石(Sapphire),SiC/Si和GaN/Si等。大晶格失配引發界面處大量位錯和缺陷的產生,極大地影響著微結構材料的光電性能及其器件應用。如何避免和消除這一負面影響,是目前材料制備中的一個迫切要解決的關鍵科學問題。這個問題的解泱,必將大大地拓寬材料的可選擇余地,開辟新的應用領域。
目前,除SiC單晶襯低材料,GaN基藍光LED材料和器件已有商品出售外,大多數高溫半導體材料仍處在實驗室研制階段,不少影響這類材料發展的關鍵問題,如GaN襯底,ZnO單晶簿膜制備,P型摻雜和歐姆電極接觸,單晶金剛石薄膜生長與N型摻雜,II-VI族材料的退化機理等仍是制約這些材料實用化的關鍵問題,國內外雖已做了大量的研究,至今尚未取得重大突破。
3光子晶體
光子晶體是一種人工微結構材料,介電常數周期的被調制在與工作波長相比擬的尺度,來自結構單元的散射波的多重干涉形成一個光子帶隙,與半導體材料的電子能隙相似,并可用類似于固態晶體中的能帶論來描述三維周期介電結構中光波的傳播,相應光子晶體光帶隙(禁帶)能量的光波模式在其中的傳播是被禁止的。如果光子晶體的周期性被破壞,那么在禁帶中也會引入所謂的“施主”和“受主”模,光子態密度隨光子晶體維度降低而量子化。如三維受限的“受主”摻雜的光子晶體有希望制成非常高Q值的單模微腔,從而為研制高質量微腔激光器開辟新的途徑。光子晶體的制備方法主要有:聚焦離子束(FIB)結合脈沖激光蒸發方法,即先用脈沖激光蒸發制備如Ag/MnO多層膜,再用FIB注入隔離形成一維或二維平面陣列光子晶體;基于功能粒子(磁性納米顆粒Fe2O3,發光納米顆粒CdS和介電納米顆粒TiO2)和共軛高分子的自組裝方法,可形成適用于可光范圍的三維納米顆粒光子晶體;二維多空硅也可制作成一個理想的3-5μm和1.5μm光子帶隙材料等。目前,二維光子晶體制造已取得很大進展,但三維光子晶體的研究,仍是一個具有挑戰性的課題。最近,Campbell等人提出了全息光柵光刻的方法來制造三維光子晶體,取得了進展。
4量子比特構建與材料
隨著微電子技術的發展,計算機芯片集成度不斷增高,器件尺寸越來越小(nm尺度)并最終將受到器件工作原理和工藝技術限制,而無法滿足人類對更大信息量的需求。為此,發展基于全新原理和結構的功能強大的計算機是21世紀人類面臨的巨大挑戰之一。1994年Shor基于量子態疊加性提出的量子并行算法并證明可輕而易舉地破譯目前廣泛使用的公開密鑰Rivest,Shamir和Adlman(RSA)體系,引起了人們的廣泛重視。
所謂量子計算機是應用量子力學原理進行計的裝置,理論上講它比傳統計算機有更快的運算速度,更大信息傳遞量和更高信息安全保障,有可能超越目前計算機理想極限。實現量子比特構造和量子計算機的設想方案很多,其中最引人注目的是Kane最近提出的一個實現大規模量子計算的方案。其核心是利用硅納米電子器件中磷施主核自旋進行信息編碼,通過外加電場控制核自旋間相互作用實現其邏輯運算,自旋測量是由自旋極化電子電流來完成,計算機要工作在mK的低溫下。
這種量子計算機的最終實現依賴于與硅平面工藝兼容的硅納米電子技術的發展。除此之外,為了避免雜質對磷核自旋的干擾,必需使用高純(無雜質)和不存在核自旋不等于零的硅同位素(29Si)的硅單晶;減小SiO2絕緣層的無序漲落以及如何在硅里摻入規則的磷原子陣列等是實現量子計算的關鍵。量子態在傳輸,處理和存儲過程中可能因環境的耦合(干擾),而從量子疊加態演化成經典的混合態,即所謂失去相干,特別是在大規模計算中能否始終保持量子態間的相干是量子計算機走向實用化前所必需克服的難題。
5發展我國半導體材料的幾點建議
鑒于我國目前的工業基礎,國力和半導體材料的發展水平,提出以下發展建議供參考。
5.1硅單晶和外延材料硅材料作為微電子技術的主導地位
至少到本世紀中葉都不會改變,至今國內各大集成電路制造廠家所需的硅片基本上是依賴進口。目前國內雖已可拉制8英寸的硅單晶和小批量生產6英寸的硅外延片,然而都未形成穩定的批量生產能力,更談不上規模生產。建議國家集中人力和財力,首先開展8英寸硅單晶實用化和6英寸硅外延片研究開發,在“十五”的后期,爭取做到8英寸集成電路生產線用硅單晶材料的國產化,并有6~8英寸硅片的批量供片能力。到2010年左右,我國應有8~12英寸硅單晶、片材和8英寸硅外延片的規模生產能力;更大直徑的硅單晶、片材和外延片也應及時布點研制。另外,硅多晶材料生產基地及其相配套的高純石英、氣體和化學試劑等也必需同時給以重視,只有這樣,才能逐步改觀我國微電子技術的落后局面,進入世界發達國家之林。
5.2GaAs及其有關化合物半導體單晶材料發展建議
GaAs、InP等單晶材料同國外的差距主要表現在拉晶和晶片加工設備落后,沒有形成生產能力。相信在國家各部委的統一組織、領導下,并爭取企業介入,建立我國自己的研究、開發和生產聯合體,取各家之長,分工協作,到2010年趕上世界先進水平是可能的。要達到上述目的,到“十五”末應形成以4英寸單晶為主2-3噸/年的SI-GaAs和3-5噸/年摻雜GaAs、InP單晶和開盒就用晶片的生產能力,以滿足我國不斷發展的微電子和光電子工業的需術。到2010年,應當實現4英寸GaAs生產線的國產化,并具有滿足6英寸線的供片能力。
5.3發展超晶格、量子阱和一維、零維半導體微結構材料的建議
(1)超晶格、量子阱材料從目前我國國力和我們已有的基礎出發,應以三基色(超高亮度紅、綠和藍光)材料和光通信材料為主攻方向,并兼顧新一代微電子器件和電路的需求,加強MBE和MOCVD兩個基地的建設,引進必要的適合批量生產的工業型MBE和MOCVD設備并著重致力于GaAlAs/GaAs,InGaAlP/InGaP,GaN基藍綠光材料,InGaAs/InP和InGaAsP/InP等材料體系的實用化研究是當務之急,爭取在“十五”末,能滿足國內2、3和4英寸GaAs生產線所需要的異質結材料。到2010年,每年能具備至少100萬平方英寸MBE和MOCVD微電子和光電子微結構材料的生產能力。達到本世紀初的國際水平。
寬帶隙高溫半導體材料如SiC,GaN基微電子材料和單晶金剛石薄膜以及ZnO等材料也應擇優布點,分別做好研究與開發工作。
(2)一維和零維半導體材料的發展設想。基于低維半導體微結構材料的固態納米量子器件,目前雖然仍處在預研階段,但極其重要,極有可能觸發微電子、光電子技術新的革命。低維量子器件的制造依賴于低維結構材料生長和納米加工技術的進步,而納米結構材料的質量又很大程度上取決于生長和制備技術的水平。因而,集中人力、物力建設我國自己的納米科學與技術研究發展中心就成為了成敗的關鍵。具體目標是,“十五”末,在半導體量子線、量子點材料制備,量子器件研制和系統集成等若干個重要研究方向接近當時的國際先進水平;2010年在有實用化前景的量子點激光器,量子共振隧穿器件和單電子器件及其集成等研發方面,達到國際先進水平,并在國際該領域占有一席之地。可以預料,它的實施必將極大地增強我國的經濟和國防實力。