公務(wù)員期刊網(wǎng) 論文中心 正文

    小學(xué)數(shù)學(xué)教學(xué)中學(xué)生能力的培養(yǎng)5篇

    前言:想要寫出一篇引人入勝的文章?我們特意為您整理了小學(xué)數(shù)學(xué)教學(xué)中學(xué)生能力的培養(yǎng)5篇范文,希望能給你帶來(lái)靈感和參考,敬請(qǐng)閱讀。

    小學(xué)數(shù)學(xué)教學(xué)中學(xué)生能力的培養(yǎng)5篇

    第一篇:小學(xué)數(shù)學(xué)教學(xué)思考能力培養(yǎng)

    一、重視形象思維,揭示形象思維與抽象思維的內(nèi)在聯(lián)系,體現(xiàn)數(shù)學(xué)思考

    形象思維與抽象思維是人類理性認(rèn)識(shí)中的兩種不同形式,但它們有著內(nèi)在的密切聯(lián)系。形象思維中有表象的儲(chǔ)備,記憶和聯(lián)想,也有概括和識(shí)別。形象思維過(guò)程實(shí)際上是表象的組合、運(yùn)動(dòng)過(guò)程。以前我們把形象思維僅局限在直觀教學(xué)手段上,僅作為一種工具,看成是一種低級(jí)思維形式。其實(shí),形象思維是十分重要的,它與抽象思維正是思維的兩個(gè)方面,形象思維可以上升為抽象思維,還可以與抽象思維相互轉(zhuǎn)化。因此,在教學(xué)中首先要做到形象思維訓(xùn)練到位,促進(jìn)實(shí)際問(wèn)題轉(zhuǎn)化成數(shù)學(xué)模型。教學(xué)中,把數(shù)學(xué)材料抽象概括成一定模型,可以使學(xué)生在解題時(shí),通過(guò)識(shí)別模式迅速找到解題途徑,從而使思維簡(jiǎn)化、推理過(guò)程縮短。但在這個(gè)模型構(gòu)建中,必須重視并強(qiáng)化形象思維。因?yàn)樾蜗笏季S越充分,抽象概括越深刻,模型越鞏固,應(yīng)用就越靈活。其次是理性思考到位,揭示形象思維與抽象思維的內(nèi)在聯(lián)系促進(jìn)數(shù)學(xué)原型向數(shù)學(xué)模型轉(zhuǎn)化。我們?cè)谶M(jìn)行直觀教學(xué)時(shí)強(qiáng)化了理性思考,揭示了形象思維與抽象思維的內(nèi)在聯(lián)系,使建立的表象及其運(yùn)動(dòng)與抽象概括建立的教學(xué)模型有機(jī)結(jié)合成一個(gè)數(shù)形結(jié)合的整體,形成高水平的數(shù)量關(guān)系和空間觀念。學(xué)生就能很敏捷地加工處理各種信息,數(shù)學(xué)思考能力就可以得到提高。

    二、內(nèi)在的思維過(guò)程與外部語(yǔ)言、操作呈現(xiàn)相結(jié)合體現(xiàn)數(shù)學(xué)思考

    思維是人腦加工處理信息的過(guò)程,思維加工的材料是信息,思維形式可分為內(nèi)部形式和外部形式兩個(gè)方面。在教學(xué)中,讓學(xué)生自己嘗試,把內(nèi)在思維過(guò)程與外在的語(yǔ)言描述和文字呈現(xiàn)有機(jī)結(jié)合起來(lái),可以增強(qiáng)數(shù)學(xué)思考,收到更好的效果。內(nèi)部的思維活動(dòng)是摸不到看不見(jiàn)的,數(shù)學(xué)教學(xué)強(qiáng)調(diào)要呈現(xiàn)思維過(guò)程,語(yǔ)言是思維的外部表現(xiàn)形式,操作是受思維支配的,我們可以用這兩種形式使思維過(guò)程外化,達(dá)到呈現(xiàn)思維過(guò)程的目的。學(xué)生的嘗試操作是思維外在呈現(xiàn)的第一步,它與大腦內(nèi)部信息處理過(guò)程幾乎同步進(jìn)行,它是思維活動(dòng)的記錄,又是推進(jìn)思維活動(dòng)的拐杖,可以清晰反映出思維過(guò)程。語(yǔ)言是呈現(xiàn)思維的主要手段,它和思維是相輔相成,相互促進(jìn)的,沒(méi)有正確的思維就沒(méi)有正確的表達(dá),表達(dá)可以幫助理清思路,使思維更具邏輯性,思維的邏輯性又促進(jìn)表達(dá)更具條理性。在這個(gè)過(guò)程中,師生和生生之間的交流和碰撞,在語(yǔ)言環(huán)境和操作過(guò)程這一顯性因素的作用下得以實(shí)現(xiàn),在課堂各要素之間形成奇特的“共振”現(xiàn)象。

    三、在教學(xué)過(guò)程中通過(guò)猜想、嘗試與推理驗(yàn)證相結(jié)合體現(xiàn)數(shù)學(xué)思考

    猜想是一種直覺(jué)思維的表現(xiàn)形式,是對(duì)研究對(duì)象進(jìn)行觀察、比較、聯(lián)想,依據(jù)已有的材料和知識(shí)作出符合一定經(jīng)驗(yàn)與事實(shí)的推測(cè)性想象,是一種非邏輯性的思維方式。猜想、嘗試與邏輯驗(yàn)證相結(jié)合,既可以培養(yǎng)學(xué)生的創(chuàng)造思維又可以培養(yǎng)學(xué)生的探索精神和邏輯思維能力。在數(shù)學(xué)教學(xué)法中,特別是在幾何初步知識(shí)的教學(xué)法中,注入猜想、嘗試環(huán)節(jié)然后進(jìn)行嚴(yán)密的推理論證,使邏輯思維與非邏輯思維交織協(xié)調(diào)作用將大大加強(qiáng)思維力度。如果猜想變成了現(xiàn)實(shí),學(xué)生不僅開(kāi)闊了視野、活躍了思維、促進(jìn)了智力發(fā)展,而且初步體驗(yàn)到了科學(xué)研究領(lǐng)域中的猜想與嘗試的魅力和數(shù)學(xué)實(shí)踐中的各種能力,知識(shí)和數(shù)學(xué)思想的共同作用,使線性思維成為網(wǎng)狀思維,不僅學(xué)到數(shù)學(xué)知識(shí),還得到了蘊(yùn)藏在數(shù)學(xué)知識(shí)中的思維方法,而且培養(yǎng)了學(xué)生大膽嘗試、探索的精神,使學(xué)生獲得嘗試成功后的愉悅。

    四、突破難點(diǎn),攻克重點(diǎn)中增強(qiáng)數(shù)學(xué)思考

    難點(diǎn)是教學(xué)思考的源泉,探索的動(dòng)力,重點(diǎn)是我們教學(xué)要達(dá)到的目標(biāo)。我們突破難點(diǎn)的目的是為了攻克重點(diǎn),解決認(rèn)識(shí)過(guò)程中的主要矛盾。有時(shí)難點(diǎn)即重點(diǎn),有時(shí)難點(diǎn)只是階梯,只有突破了難點(diǎn)才能攻克重點(diǎn)。如果在我們?cè)诮虒W(xué)中讓學(xué)生掌握科學(xué)思維的方法,提供了突破難點(diǎn)、攻克重點(diǎn)的鑰匙,那么在學(xué)習(xí)新教材時(shí),能迅速聯(lián)想到與學(xué)習(xí)內(nèi)容相關(guān)的信息,明確其新舊之間的同似性,在數(shù)學(xué)信息整理的過(guò)程中,明確其新舊之間的變遷性,同似與變遷結(jié)合,化難為易,科學(xué)的思維方式得到鍛煉和培養(yǎng),思維的力度就得到了加強(qiáng)。在這個(gè)過(guò)程中還應(yīng)克服思維定式的影響,有的思維定式不利于教學(xué)內(nèi)容的學(xué)習(xí),在教學(xué)的組織過(guò)程中要盡量把思維定式的負(fù)面影響降至最低,確保新教學(xué)內(nèi)容學(xué)習(xí)的質(zhì)量。這也是增強(qiáng)學(xué)生數(shù)學(xué)思考必須面對(duì)和處理的問(wèn)題。

    綜上所述,在日常的教學(xué)過(guò)程中,只有把學(xué)生的數(shù)學(xué)思考放在數(shù)學(xué)教學(xué)的戰(zhàn)略地位,才能讓學(xué)生真正走上思維發(fā)展的快車道,才能不斷從內(nèi)至外全方面逐步提升。

    作者:陳鋼 單位:廣東省石岐中心小學(xué)

    第二篇:小學(xué)數(shù)學(xué)教學(xué)中思維能力培養(yǎng)

    一、以數(shù)學(xué)特征性為基礎(chǔ),培養(yǎng)學(xué)生的數(shù)學(xué)思維

    小學(xué)數(shù)學(xué)不同于其他學(xué)科,其充滿了數(shù)字、公式、定理,所以,數(shù)學(xué)這對(duì)于小學(xué)生來(lái)說(shuō)是“眼花繚亂”、“枯燥乏味”的,然而,正是這些數(shù)學(xué)特征,提供著培養(yǎng)學(xué)生思維能力的基礎(chǔ)資源,在教學(xué)中,教師要對(duì)數(shù)學(xué)特征進(jìn)行分析,并以多種教學(xué)方式,來(lái)實(shí)現(xiàn)學(xué)生數(shù)學(xué)思維的培養(yǎng)。

    其一,抓住數(shù)學(xué)邏輯性,培養(yǎng)學(xué)生的邏輯思維。步步深入,環(huán)環(huán)相扣是數(shù)學(xué)的最大特點(diǎn),而在教學(xué)中,教師要運(yùn)用數(shù)學(xué)知識(shí),尤其是問(wèn)題分析方式,來(lái)培養(yǎng)學(xué)生的邏輯思維。例如在加減法和乘除法混合運(yùn)算時(shí),教師強(qiáng)調(diào)運(yùn)算順序,將先算括號(hào)內(nèi),再算乘除,最后算加減的過(guò)程性運(yùn)算講解,這就為學(xué)生注入了隱形的邏輯思維,再如在簡(jiǎn)易方程學(xué)習(xí)中,用“小明的家到學(xué)校1000米,他一分鐘步行25米,問(wèn)小明多長(zhǎng)時(shí)間能到學(xué)校”,這就要求學(xué)生弄明白方程式兩邊的等量關(guān)系,并且對(duì)問(wèn)題進(jìn)行分析,這就刺激了學(xué)生思維能力的培養(yǎng)。

    其二,抓住數(shù)學(xué)問(wèn)題性,培養(yǎng)學(xué)生發(fā)散思維。問(wèn)題教學(xué)是數(shù)學(xué)教學(xué)的基本特征,在小學(xué)數(shù)學(xué)教學(xué)中,教師要抓住問(wèn)題的延伸與深化,來(lái)實(shí)現(xiàn)學(xué)生思維發(fā)散能力和創(chuàng)新能力的提升。例如教師在進(jìn)行乘積教學(xué)中,這樣設(shè)置5×3=?,5+5+5=?,你還能將5×3轉(zhuǎn)化為那個(gè)數(shù)字的加法運(yùn)算?通過(guò)這些問(wèn)題,你發(fā)現(xiàn)了什么規(guī)律?這就引導(dǎo)學(xué)生進(jìn)行問(wèn)題思考與探索,進(jìn)而激發(fā)了學(xué)生對(duì)問(wèn)題的研究。再如在學(xué)習(xí)通分時(shí),讓學(xué)生比較3/4和4/5的大小,教師這樣進(jìn)行問(wèn)題設(shè)置:化成小數(shù)比較兩者大??;化成同分母分?jǐn)?shù)進(jìn)行比較大小;化成同分子分?jǐn)?shù)比較大小。這就將分?jǐn)?shù)比較方式擴(kuò)展,而通過(guò)學(xué)生訓(xùn)練后,教師與學(xué)生展開(kāi)交流,并作小結(jié),這就促使學(xué)生形成了探索意識(shí),也提升了學(xué)生的思維發(fā)散力。

    其三,認(rèn)識(shí)數(shù)學(xué)教學(xué)系統(tǒng)性,堅(jiān)持過(guò)程性培養(yǎng)學(xué)生思維能力。數(shù)學(xué)知識(shí)具有系統(tǒng)性特征,隨著年級(jí)的遞增,其難度逐步增加,而且要求學(xué)生的思維能力越來(lái)越強(qiáng),尤其是數(shù)學(xué)創(chuàng)新能力、思維發(fā)散能力,而在教學(xué)中,教師一定要認(rèn)清數(shù)學(xué)的系統(tǒng)性和過(guò)程性特征,根據(jù)學(xué)生的思維特征和實(shí)際能力,進(jìn)行目標(biāo)制定、教學(xué)方式轉(zhuǎn)變,堅(jiān)持由簡(jiǎn)到難,步步提升的教學(xué)方式,從而保證學(xué)生思維開(kāi)發(fā)的有序性。

    二、立足學(xué)生心理特征,培養(yǎng)學(xué)生思維能力

    1、抓住學(xué)生好奇心,培養(yǎng)學(xué)生問(wèn)題思維

    “這是為什么”、“怎么會(huì)這樣”、“這個(gè)怎么不行”等等類似的疑問(wèn)在小學(xué)生的腦海中充斥著,他們渴望找到“十萬(wàn)個(gè)為什么”的原渴望自己就是那個(gè)問(wèn)題解答者,那么在教學(xué)中,教師要抓住學(xué)生的好奇心,以滿足小學(xué)生的渴望為基礎(chǔ),進(jìn)行學(xué)生思維能力培養(yǎng)。如在圖形與變換教學(xué)中,教師問(wèn)“四邊形切掉一個(gè)角,會(huì)變成什么圖形”,有的學(xué)生說(shuō)三角形,有的同學(xué)搖頭,此時(shí)教師并不作回答,而是讓學(xué)生進(jìn)行討論,并畫出圖形,此時(shí)學(xué)生會(huì)說(shuō)“是三角形”,“竟然不是三角形”,“怎么會(huì)是五角星”,而針對(duì)學(xué)生五花八門的答案,教師說(shuō)“你們想不想知道原因呢?”,而在學(xué)習(xí)和討論中,學(xué)生必然會(huì)發(fā)現(xiàn)數(shù)學(xué)的豐富性和變化性,而學(xué)生發(fā)現(xiàn)問(wèn)題的過(guò)程,正是學(xué)生多視角觀察問(wèn)題的過(guò)程,而在問(wèn)題解決中,學(xué)生通過(guò)動(dòng)手繪畫,大腦想想等,促進(jìn)了學(xué)生思維能力的提升,尤其是在面對(duì)有多重答案的問(wèn)題時(shí),學(xué)生的發(fā)散思維和創(chuàng)新思維得到提升。

    2、抓住學(xué)生興趣,創(chuàng)設(shè)思維環(huán)境

    良好的教學(xué)情境是學(xué)生思維能力開(kāi)發(fā)與培養(yǎng)的環(huán)境支撐,而開(kāi)放、自由、和諧的教學(xué)情境最能激發(fā)學(xué)生的思維,這就要求在教學(xué)中,教師要通過(guò)多種方式,來(lái)構(gòu)建適應(yīng)于學(xué)生興趣心理的思維環(huán)境。其一,進(jìn)行興趣化教學(xué),激發(fā)學(xué)生的數(shù)學(xué)思維。如在講解加法運(yùn)算時(shí),教師用“猴子撈月亮”的小故事,進(jìn)行問(wèn)題講解,這就增強(qiáng)了學(xué)生的學(xué)習(xí)興趣,進(jìn)而激發(fā)了學(xué)生學(xué)習(xí)能動(dòng)性的發(fā)揮,而在這種環(huán)境下,學(xué)生的思維意識(shí)被激發(fā)。其二,進(jìn)行模具教學(xué)。在三角形判定學(xué)習(xí)中,教師將銳角三角形、鈍角三角形、直角三角形以及兩個(gè)多邊形放在一起,讓學(xué)生判斷哪些是三角形的同時(shí),標(biāo)準(zhǔn)上三角形的類型,這既鍛煉了學(xué)生的觀察力,而且鍛煉的學(xué)生的思維力和判斷力,通過(guò)小問(wèn)題設(shè)置,來(lái)實(shí)現(xiàn)了學(xué)生思維判斷力的提升。其三,采用小組合作方式,通過(guò)小組間的合作與學(xué)習(xí),創(chuàng)設(shè)開(kāi)放與和諧的課堂環(huán)境,促使學(xué)生各表己見(jiàn),進(jìn)而促使學(xué)生思維活躍,而通過(guò)學(xué)生間的交流,實(shí)現(xiàn)思維的擴(kuò)展與延伸,如在統(tǒng)計(jì)學(xué)習(xí)中,以小組合作形式展開(kāi)教學(xué),學(xué)生對(duì)數(shù)據(jù)進(jìn)行分組、分析,對(duì)統(tǒng)計(jì)結(jié)果進(jìn)行核對(duì)、檢查,并實(shí)現(xiàn)小組內(nèi)部分工,這就鍛煉了學(xué)生的合作能力,同時(shí),針對(duì)統(tǒng)計(jì)過(guò)程中的問(wèn)題,學(xué)生進(jìn)行討論解決,交流問(wèn)題原因,這不但形成了思維融合,而且提升了學(xué)生分析問(wèn)題、解決問(wèn)題的能力。

    3、創(chuàng)設(shè)問(wèn)題情境,培養(yǎng)學(xué)生思維批判力

    批判性思維是思維品質(zhì)的一個(gè)重要方面,這也是實(shí)現(xiàn)創(chuàng)新思維的前提,在教學(xué)中,教師要通過(guò)問(wèn)題設(shè)置、陷阱問(wèn)題、多元問(wèn)題整合等方式,來(lái)促使學(xué)生批判思維的形成,如在教學(xué)中,教師故意將概念、定理運(yùn)用錯(cuò)誤,或是創(chuàng)設(shè)錯(cuò)誤問(wèn)題情境,讓學(xué)生依據(jù)教師的思維走向進(jìn)行問(wèn)題分析后,發(fā)現(xiàn)問(wèn)題設(shè)置錯(cuò)誤,刺激學(xué)生“不要輕信問(wèn)題”,從而促進(jìn)學(xué)生批判思維的形成。再如設(shè)置一題多解的問(wèn)題情境,讓學(xué)生對(duì)問(wèn)題解法進(jìn)行討論,并對(duì)學(xué)生的解答方式進(jìn)行比較,這就刺激了學(xué)生思維的多向發(fā)展。

    三、小結(jié)

    小學(xué)數(shù)學(xué)的學(xué)科特征決定了數(shù)學(xué)思維的邏輯性、系統(tǒng)性、發(fā)散性等特征,在教學(xué)中,教師要準(zhǔn)確把握數(shù)學(xué)學(xué)科特征和教學(xué)內(nèi)容,對(duì)教學(xué)方式進(jìn)行創(chuàng)新,對(duì)數(shù)學(xué)問(wèn)題進(jìn)行引申,并采用多模并用的教學(xué)方式,創(chuàng)設(shè)思維培養(yǎng)的教學(xué)情境等,最終實(shí)現(xiàn)學(xué)生思維能力的提升。

    作者:林森輝 單位:福建省漳浦縣古雷中心學(xué)校

    第三篇:數(shù)學(xué)教學(xué)中小學(xué)生思維能力的培養(yǎng)

    一、創(chuàng)設(shè)必要的學(xué)習(xí)環(huán)境,促使學(xué)生主動(dòng)思維

    小學(xué)生的思維依賴性強(qiáng),尤其是低年級(jí)的小學(xué)生,其思維較多處于被動(dòng)思維狀態(tài),因此,教師要充分調(diào)動(dòng)他們學(xué)習(xí)的積極性,抓住一切有利時(shí)機(jī),為他們維護(hù)創(chuàng)設(shè)良好的學(xué)習(xí)環(huán)境或情境,把學(xué)生的情緒引導(dǎo)到與學(xué)生學(xué)習(xí)內(nèi)容有關(guān)的情境中,從而激發(fā)學(xué)生學(xué)習(xí),讓他們主動(dòng)開(kāi)動(dòng)腦筋,手腦口并用,積極主動(dòng)地獲取知識(shí)。例如,我在講授“能被3、4整除的數(shù)”這個(gè)課題時(shí),在導(dǎo)入新課時(shí),先讓學(xué)生任意說(shuō)出一個(gè)整數(shù),我馬上就能判斷是否能被3,4整除。這一情景使學(xué)生感到十分驚奇刺激,急于知道這是為什么。于是在我的誘導(dǎo)引導(dǎo)下,逐步呈現(xiàn)出能被3、4整除的數(shù)的特征,從而使學(xué)生體驗(yàn)到了求知之樂(lè)。同樣,對(duì)于低年級(jí)小學(xué)生而言,還可以利用游戲教學(xué)法,寓教于樂(lè)。因?yàn)榈湍昙?jí)學(xué)生更喜愛(ài)游戲活動(dòng),因此,在教學(xué)中適當(dāng)采用游戲的方式,會(huì)讓學(xué)生十分歡迎,興趣更濃,教學(xué)效果也更好。如用開(kāi)火車、開(kāi)房門、找朋友、奪紅旗、放鞭炮等游戲活動(dòng),使學(xué)生在輕松、愉快的氛圍中學(xué)到了知識(shí),掌握了本領(lǐng)。

    二、夯實(shí)學(xué)生基礎(chǔ)知識(shí),加強(qiáng)學(xué)生逆向思維訓(xùn)練

    由于農(nóng)村學(xué)生的接觸面相對(duì)較狹窄,學(xué)習(xí)模式主要靠教師的“傳道授業(yè)解惑”。所以要提高學(xué)生的思維能力,首先,要夯實(shí)學(xué)生的基礎(chǔ)知識(shí)。俗話說(shuō):“萬(wàn)丈高樓從地起?!焙玫幕A(chǔ)是提高學(xué)生的思維能力必要條件,有了基礎(chǔ)才能加強(qiáng)變式訓(xùn)練、反復(fù)練習(xí)、舉一反三逆向思維。在教學(xué)中加強(qiáng)變式訓(xùn)練逆向思維對(duì)提高學(xué)生的思維能力行之有效。所謂變式逆向思維,就是指教師有目的、有計(jì)劃地對(duì)命題進(jìn)行合理地轉(zhuǎn)化。如題設(shè)和結(jié)論的互換,圖形的位置、行狀、大小的變化,規(guī)律及語(yǔ)言符號(hào)的互譯,最終使學(xué)生掌握那些在變化過(guò)程中始終保持不變的因素,從而透過(guò)現(xiàn)象看到本質(zhì)。這就是人們常講的“萬(wàn)變不離其宗”。變式訓(xùn)練可以把很多數(shù)學(xué)知識(shí)融合在一起,提高學(xué)生的綜合解題能力和靈活多變思維能力。如:一道例題可以變式成很多題目,而且很多考題都是書(shū)上的例題或習(xí)題的變式題。如果我們?cè)诮虒W(xué)中加強(qiáng)了變式訓(xùn)練,既可提高學(xué)生的思維能力還可以應(yīng)付很多考試。

    三、加強(qiáng)表達(dá)能力訓(xùn)練,促進(jìn)思維提升發(fā)展

    農(nóng)村小學(xué)生往往語(yǔ)言表達(dá)能力較低,不能用連貫的語(yǔ)言完整清楚地表達(dá)自己的思維過(guò)程,尤其是數(shù)學(xué)術(shù)語(yǔ)較多,阻礙了思維發(fā)展。《數(shù)學(xué)課程標(biāo)準(zhǔn)》要求:能清晰、有條理地表達(dá)自己的思考過(guò)程,做到言之有理、落筆有據(jù);在與他人交流的過(guò)程中,能運(yùn)用數(shù)學(xué)語(yǔ)言合乎邏輯地進(jìn)行討論與質(zhì)疑。因此,有意識(shí)地訓(xùn)練學(xué)生的語(yǔ)言表達(dá)能力,是學(xué)生進(jìn)行數(shù)學(xué)語(yǔ)言訓(xùn)練和發(fā)展思維的重要環(huán)節(jié)之一。農(nóng)村的小學(xué)生更要加強(qiáng)數(shù)學(xué)語(yǔ)言訓(xùn)練,所以教師要耐心地聽(tīng)學(xué)生說(shuō),鼓勵(lì)學(xué)生說(shuō),培養(yǎng)學(xué)生會(huì)說(shuō),引導(dǎo)學(xué)生說(shuō)好。為此,教師要長(zhǎng)期地對(duì)學(xué)生進(jìn)行表達(dá)的訓(xùn)練,要強(qiáng)調(diào)學(xué)生對(duì)每個(gè)算理的正確表述,規(guī)范學(xué)生的語(yǔ)言,讓學(xué)生掌握基本的敘述模式。如用“首先……然后……最后……”“之所以……是因?yàn)椤钡染涫饺フf(shuō)。對(duì)學(xué)生進(jìn)行說(shuō)的訓(xùn)練時(shí),要加強(qiáng)復(fù)述,讓學(xué)生多說(shuō),讓每個(gè)學(xué)生都有說(shuō)的機(jī)會(huì),讓學(xué)生完整地?cái)⑹霁@取知識(shí)的過(guò)程。通過(guò)循序漸進(jìn)的訓(xùn)練,通過(guò)培養(yǎng)學(xué)生表達(dá)能力,達(dá)到發(fā)展思維能力提升的效果。

    四、引導(dǎo)學(xué)生歸納總結(jié),不斷提高思維能力

    在教學(xué)工作中,很多教師是為了教而教,所以培養(yǎng)的學(xué)生,在學(xué)習(xí)中很多也是為了學(xué)而學(xué),為了做題而做題,很少問(wèn)為什么學(xué),為什么做,從不歸納總結(jié)。所以,要提高學(xué)生的思維能力還要鼓勵(lì)學(xué)生學(xué)完后做完后多總結(jié)、多反思。想想問(wèn)題的解題方法、思路等。把各種題目或解題方法歸類匯總,這樣也有助于提高學(xué)生的思維能力,唯有如此,才能不斷提高。

    作者:梁書(shū)江 單位:河北省邢臺(tái)市經(jīng)濟(jì)開(kāi)發(fā)區(qū)火炬學(xué)區(qū)黃家屯小學(xué)

    第四篇:小學(xué)數(shù)學(xué)教學(xué)中形象思維能力的培養(yǎng)

    一、小學(xué)數(shù)學(xué)教學(xué)形象思維培養(yǎng)的現(xiàn)狀

    1.1沒(méi)有正確的認(rèn)識(shí)數(shù)學(xué)形象思維的重要性

    長(zhǎng)時(shí)間的教育過(guò)程中,小學(xué)數(shù)學(xué)教學(xué)模式之中,存在著對(duì)形象思維不夠重視的局面,部分的教師甚至認(rèn)為形象思維是一種低級(jí)的思維模式,小學(xué)的數(shù)學(xué)教學(xué)主要的任務(wù)就是輔助學(xué)生從這種低級(jí)的模式中發(fā)展過(guò)渡到高級(jí)的抽象思維模式之中,完成過(guò)渡之后形象思維也就不再有任何的作用了,這樣就是將形象思維的基礎(chǔ)性特點(diǎn)和重要性特點(diǎn)完全忽略而造成的。在這種教學(xué)理念的影響下,數(shù)學(xué)教學(xué)課堂往往沒(méi)有任何的活力,使得學(xué)生對(duì)學(xué)習(xí)失去興趣。

    1.2形象思維的訓(xùn)練嚴(yán)重欠缺

    現(xiàn)如今,我國(guó)的小學(xué)生在學(xué)習(xí)數(shù)學(xué)中的關(guān)鍵性問(wèn)題就是數(shù)學(xué)思維的發(fā)展極不平衡,沒(méi)有創(chuàng)造力,學(xué)生的學(xué)習(xí)過(guò)程只是對(duì)公式的套用完成,缺少真正的思考過(guò)程。造成此項(xiàng)原因的主要原因就是教師在日常的教學(xué)過(guò)程中,重點(diǎn)放在了培養(yǎng)學(xué)生的抽象思維能力,而忽視了形象思維能力的培養(yǎng)。也就是說(shuō)學(xué)生還沒(méi)有將一項(xiàng)事物轉(zhuǎn)化成形象模式之前,就要直接變成抽象的理念,造成學(xué)生無(wú)法真正深刻的對(duì)其有任何良好的理解。

    二、數(shù)學(xué)形象思維在小學(xué)數(shù)學(xué)教育中的重要性作用

    形象思維廣泛存在于數(shù)學(xué)的研究活動(dòng)之中,并且不斷的變化演進(jìn),從而以多種形式表現(xiàn)存在,同時(shí)也是決定著數(shù)學(xué)創(chuàng)造力與數(shù)學(xué)發(fā)現(xiàn)的一個(gè)核心性因素。實(shí)際上,數(shù)學(xué)中的大多數(shù)結(jié)果都是先從觀察和實(shí)驗(yàn)中取得的,之后再經(jīng)過(guò)歸納總結(jié)被發(fā)現(xiàn)。這也就表明,數(shù)學(xué)研究的活動(dòng)過(guò)程中一般是以形象思維為主。自然的,數(shù)學(xué)定理和結(jié)論的闡述,能夠有效的訓(xùn)練學(xué)生的抽象思維能力,可是數(shù)學(xué)定理、結(jié)論的發(fā)現(xiàn)過(guò)程同樣也是創(chuàng)造性的一般過(guò)程。明確的掌握了解數(shù)學(xué)研究活動(dòng)中的發(fā)現(xiàn)過(guò)程,更加有助于培養(yǎng)學(xué)生的創(chuàng)造性思維能力。所以,在數(shù)學(xué)教學(xué)的過(guò)程之中,有效的利用數(shù)學(xué)知識(shí)度學(xué)生的形象思維能力做培養(yǎng),啟發(fā)學(xué)生的創(chuàng)造性思維,促使整個(gè)的數(shù)學(xué)思維理念完成和諧有序的發(fā)展,這在實(shí)際的工作學(xué)習(xí)中是十分重要的。

    三、形象思維能力在小學(xué)數(shù)學(xué)教學(xué)中的培養(yǎng)

    3.1直觀教學(xué)培養(yǎng)學(xué)生的形象思維能力

    書(shū)數(shù)學(xué)這門課程的抽象性突出,要想良好的解決數(shù)學(xué)問(wèn)題只能怪的高度抽象型和學(xué)生具體的形象思維之間的矛盾,就需要使用直觀教學(xué)的方式。直觀教學(xué)在培養(yǎng)形象思維能力的過(guò)程中十分有效。舉個(gè)例子,在講述圓面積公式的時(shí)候,教師可以用一張紙剪出兩個(gè)面積一樣的圓形,之后將這樣兩個(gè)圓從圓心至圓弧剪成多個(gè)大小一樣的扇形。在教學(xué)的過(guò)程中,教師可以把兩個(gè)圓張貼在黑板上,讓學(xué)生直觀的看見(jiàn)兩個(gè)圓的面積是一樣的。之后再把其中一個(gè)圓展開(kāi)變成兩個(gè)半圓,拼做一個(gè)長(zhǎng)方形。那么通過(guò)這個(gè)直觀的展示,學(xué)生就能夠清楚的明白這個(gè)長(zhǎng)方形的面積就是圓的面積,已知長(zhǎng)方形的面積是長(zhǎng)乘以寬得到,那么理解圓的面積是長(zhǎng)乘以寬乘以π就容易多了。透過(guò)這樣一個(gè)直觀的教學(xué)模式,讓學(xué)生從形象到抽象,能夠更加利于學(xué)生取得清楚的數(shù)學(xué)一般理念。

    3.2引導(dǎo)想象

    教師在課堂教學(xué)的過(guò)程中,需要注重建立課堂教學(xué)情境,充分的發(fā)揮學(xué)生的想象力。因?yàn)楝F(xiàn)代心理學(xué)認(rèn)為,表象不但是能夠存儲(chǔ)的,同時(shí)也是對(duì)存儲(chǔ)的表象進(jìn)行加工的過(guò)程,形成一個(gè)新的想象表象,也是開(kāi)展形象思維的重要形式。

    四、結(jié)語(yǔ)

    在數(shù)學(xué)教學(xué)的過(guò)程中,教師需要嘗試各種方式啟發(fā)、培養(yǎng)學(xué)生的思維能力,從整體上提升學(xué)生的思維品質(zhì)。同時(shí)將學(xué)生的形象思維能力建設(shè)培養(yǎng),也是對(duì)學(xué)生對(duì)數(shù)學(xué)學(xué)習(xí)的有利輔助線索。

    作者:馬桂芬 單位:赤峰市松山區(qū)河南營(yíng)子小學(xué)

    第五篇:小學(xué)數(shù)學(xué)教學(xué)歸納能力的培養(yǎng)

    一、提出歸納猜想的能力

    所謂的猜想就是對(duì)數(shù)學(xué)研究或?qū)W習(xí)的對(duì)象以及知識(shí)進(jìn)行一定的觀察,并結(jié)合自身已有的知識(shí)和經(jīng)驗(yàn)對(duì)其進(jìn)行較為合理的猜測(cè)和想象。所以說(shuō),應(yīng)當(dāng)對(duì)數(shù)學(xué)猜想能力進(jìn)一步加強(qiáng)培養(yǎng),這就要靠逐步通過(guò)分析、實(shí)驗(yàn)、類比以及歸納之后依據(jù)自身已有的知識(shí)進(jìn)行一種知識(shí)猜想。

    二、具備相應(yīng)的數(shù)學(xué)基礎(chǔ)知識(shí)

    要知道數(shù)學(xué)知識(shí)是整個(gè)數(shù)學(xué)歸納能力的基礎(chǔ),眾所周知,知識(shí)是整個(gè)人類經(jīng)驗(yàn)以及歷史的總結(jié),從心理學(xué)的層面上講,知識(shí)是以思想內(nèi)容的形式被人們所掌握的。從廣義上說(shuō),知識(shí)主要是主體通過(guò)與自身所處的環(huán)境進(jìn)行相互的作用進(jìn)而獲得的信息以及信息的組成,這種信息如果存儲(chǔ)于個(gè)體之內(nèi)就是個(gè)體知識(shí),如果存儲(chǔ)于個(gè)體之外的話就是人類知識(shí),而我們?cè)谶@里所要關(guān)注和討論的就是個(gè)體知識(shí)。學(xué)生歸納能力的發(fā)展以及培養(yǎng)與數(shù)學(xué)知識(shí)本身有著密不可分的關(guān)聯(lián),這種歸納能力的形成和發(fā)展必須是以已有的數(shù)學(xué)知識(shí)作為前提的。數(shù)學(xué)歸納能力的形成過(guò)程要有舊知識(shí),要將以往學(xué)過(guò)的數(shù)學(xué)知識(shí)作為歸納能力形成和發(fā)展的因素和條件。其實(shí),學(xué)生在學(xué)習(xí)新知識(shí)的過(guò)程中也是學(xué)生在主動(dòng)積極地從自身已經(jīng)具備的知識(shí)庫(kù)中提取相應(yīng)的舊知識(shí)與新知識(shí)相聯(lián),進(jìn)而加以“固定”或者是“歸屬”的動(dòng)態(tài)過(guò)程。這一過(guò)程往往使得原先的知識(shí)結(jié)構(gòu)以及學(xué)生的人知會(huì)發(fā)生相應(yīng)的整合或者分化,進(jìn)而能夠使得學(xué)生獲得清晰穩(wěn)定的經(jīng)驗(yàn)或者是新的知識(shí),所以說(shuō)舊知識(shí)是學(xué)生進(jìn)行新知識(shí)學(xué)習(xí)的基石,也是學(xué)生進(jìn)行數(shù)學(xué)歸納學(xué)習(xí)的前提條件。

    三、具有必要的數(shù)學(xué)邏輯基礎(chǔ)知識(shí)

    數(shù)學(xué)學(xué)科所具有的一個(gè)重要特點(diǎn)就是數(shù)學(xué)學(xué)科自身的嚴(yán)謹(jǐn)性,也就是具有結(jié)論上的確定性和邏輯上的嚴(yán)密性,所有的論證以及推理都離不開(kāi)邏輯幾何學(xué),也就是從較少的幾條公理中通過(guò)相應(yīng)的邏輯進(jìn)行推理,進(jìn)而得出很多人們之前所不知道的新的定理,進(jìn)而使得數(shù)學(xué)成為一門獨(dú)立的學(xué)科而存在。邏輯知識(shí)似乎數(shù)學(xué)在教學(xué)活動(dòng)中進(jìn)行表達(dá)的工具,有的小學(xué)生自身的邏輯知識(shí)掌握的很少,常常會(huì)有些典型的邏輯錯(cuò)誤。邏輯知識(shí)作為一個(gè)有力的工具就是來(lái)揭示邏輯錯(cuò)誤以及批判詭辯的。但是在教材中常沒(méi)有對(duì)邏輯知識(shí)進(jìn)行詳細(xì)講解的內(nèi)容,這就使得學(xué)生不得不按照教師的邏輯思維習(xí)慣進(jìn)行思維的再創(chuàng)造、模仿。所以說(shuō),提升小學(xué)生的歸納推理能力,教師應(yīng)當(dāng)對(duì)邏輯基礎(chǔ)知識(shí)進(jìn)行適當(dāng)?shù)慕榻B,并要求學(xué)生進(jìn)行領(lǐng)會(huì)和理解,只有這樣才能使得學(xué)生對(duì)邏輯思維的基本方法和形式做到基本的掌握。

    四、具有一定的數(shù)學(xué)表達(dá)能力

    數(shù)學(xué)也是作為一種語(yǔ)言而存在,是作為數(shù)學(xué)交流與數(shù)學(xué)思維的工具,所以應(yīng)當(dāng)對(duì)數(shù)學(xué)語(yǔ)言的運(yùn)用要做到準(zhǔn)確無(wú)誤,準(zhǔn)確理解數(shù)學(xué)的學(xué)術(shù)英語(yǔ)一以及數(shù)學(xué)符號(hào)自身所具備的含義。但是在實(shí)際的學(xué)習(xí)過(guò)程中,很多的小學(xué)生并不習(xí)慣運(yùn)用數(shù)學(xué)語(yǔ)言或許是缺乏對(duì)數(shù)學(xué)語(yǔ)言多樣形式的轉(zhuǎn)換能力。特別是對(duì)較為抽象的數(shù)學(xué)語(yǔ)言符號(hào),學(xué)生在學(xué)習(xí)的過(guò)程中往往是采取回避的態(tài)度,這就使得小學(xué)生在學(xué)習(xí)數(shù)學(xué)的時(shí)候往往會(huì)思維僵化、死板,所以說(shuō),數(shù)學(xué)語(yǔ)言形態(tài)之間應(yīng)當(dāng)形成互譯的狀態(tài)和模式,這樣不僅有利于數(shù)學(xué)知識(shí)的記憶與理解,同時(shí)還能幫助學(xué)生對(duì)數(shù)學(xué)語(yǔ)言本身做到熟悉,進(jìn)而也就能更好地、更準(zhǔn)確地運(yùn)用數(shù)學(xué)的語(yǔ)言進(jìn)行思維的表達(dá)以及對(duì)歸納推理的過(guò)程進(jìn)行熟悉和掌握。

    五、在歸納的過(guò)程中進(jìn)行自我反思

    所謂的反思就是指學(xué)生能夠主動(dòng)自覺(jué)地對(duì)數(shù)學(xué)知識(shí)活動(dòng)進(jìn)行相應(yīng)的分析、考察、評(píng)價(jià)以及總結(jié)和調(diào)節(jié)的一個(gè)過(guò)程,同時(shí)也是學(xué)生對(duì)學(xué)習(xí)進(jìn)行調(diào)控的基礎(chǔ),是學(xué)生在認(rèn)知的過(guò)程中對(duì)自我意識(shí)進(jìn)行強(qiáng)化、進(jìn)行自我調(diào)節(jié)以及自我監(jiān)控的形式。荷蘭著名的數(shù)學(xué)家弗萊登塔爾曾說(shuō)過(guò),反思是數(shù)學(xué)思維的動(dòng)力以及核心,對(duì)于歸納和推理之后的反思能力,比如,這道題是怎么想的?這道題又是怎么進(jìn)行推理的?推理的方法是什么?還能不能用其他的方式進(jìn)行推理?如果推理錯(cuò)誤的話,出錯(cuò)的原因又是什么呢?在經(jīng)過(guò)一系列的推理和歸納之后,就能夠得到優(yōu)異的解題方案,進(jìn)而能夠使得數(shù)學(xué)知識(shí)更加的系統(tǒng)化和結(jié)構(gòu)化,特別是能夠?yàn)閷?lái)的數(shù)學(xué)推理以及歸納能力的提升起到良好的幫助作用。

    綜上所述,影響小學(xué)生數(shù)學(xué)歸納能力培養(yǎng)的因素主要有五種,教師在教學(xué)的過(guò)程中還應(yīng)當(dāng)從這五個(gè)方面能力的培養(yǎng)上入手,提升教學(xué)活動(dòng)中學(xué)生數(shù)學(xué)歸納能力。同時(shí),在小學(xué)數(shù)學(xué)的教學(xué)活動(dòng)中應(yīng)當(dāng)對(duì)學(xué)生思維能力的培養(yǎng)格外重視,引導(dǎo)學(xué)生進(jìn)行自主學(xué)習(xí)數(shù)學(xué),教會(huì)學(xué)生正確使用數(shù)學(xué)的歸納法。

    作者:郭明霞 單位:湖北省監(jiān)利縣招生辦公室

    主站蜘蛛池模板: 欧洲成人在线视频| 天天在线天天看成人免费视频| 97成人在线视频| 成人毛片18女人毛片免费96| 国产精品成人99久久久久| 国产成人精品免费久久久久| 亚洲最大成人网色香蕉| 欧美日韩亚洲成人| 国产成人无码一区二区三区在线 | 国产成人精品综合久久久久| 国产成人免费在线观看 | 成人精品一区二区三区中文字幕 | 四虎成人精品无码| 成人无码午夜在线观看| 成成人看片在线| 国产成人久久一区二区三区| 国产精品成人免费福利| 亚洲第一成人在线| 日韩精品成人一区二区三区| 在线成人播放毛片| 中文国产成人精品久久水| 国产成人精品自线拍| 97成人在线视频| 亚洲最大成人网色香蕉| 成人亚洲欧美激情在线电影| 亚洲av成人一区二区三区| 国产精品成人扳**a毛片| 成人黄色免费网址| 一级成人理伦片| 亚洲国产成人久久精品影视| 四虎成人精品在永久在线| 国产成人麻豆精品午夜福利在线| 欧美成人免费观看久久| 亚洲AV无码成人精品区在线观看 | 国产成人亚洲精品电影| 成人国产激情福利久久精品| 粗大黑人巨精大战欧美成人| 亚洲av午夜成人片| 99久久亚洲综合精品成人网 | 成人午夜福利视频镇东影视| 高清成人爽a毛片免费网站|