前言:一篇好文章的誕生,需要你不斷地搜集資料、整理思路,本站小編為你收集了豐富的電力電子技術論文主題范文,僅供參考,歡迎閱讀并收藏。
現代電源技術是應用電力電子半導體器件,綜合自動控制、計算機(微處理器)技術和電磁技術的多學科邊緣交又技術。在各種高質量、高效、高可靠性的電源中起關鍵作用,是現代電力電子技術的具體應用。
當前,電力電子作為節能、節才、自動化、智能化、機電一體化的基礎,正朝著應用技術高頻化、硬件結構模塊化、產品性能綠色化的方向發展。在不遠的將來,電力電子技術將使電源技術更加成熟、經濟、實用,實現高效率和高品質用電相結合。
1.電力電子技術的發展
現代電力電子技術的發展方向,是從以低頻技術處理問題為主的傳統電力電子學,向以高頻技術處理問題為主的現代電力電子學方向轉變。電力電子技術起始于五十年代末六十年代初的硅整流器件,其發展先后經歷了整流器時代、逆變器時代和變頻器時代,并促進了電力電子技術在許多新領域的應用。八十年代末期和九十年代初期發展起來的、以功率MOSFET和IGBT為代表的、集高頻、高壓和大電流于一身的功率半導體復合器件,表明傳統電力電子技術已經進入現代電力電子時代。
1.1整流器時代
大功率的工業用電由工頻(50Hz)交流發電機提供,但是大約20%的電能是以直流形式消費的,其中最典型的是電解(有色金屬和化工原料需要直流電解)、牽引(電氣機車、電傳動的內燃機車、地鐵機車、城市無軌電車等)和直流傳動(軋鋼、造紙等)三大領域。大功率硅整流器能夠高效率地把工頻交流電轉變為直流電,因此在六十年代和七十年代,大功率硅整流管和晶閘管的開發與應用得以很大發展。當時國內曾經掀起了-股各地大辦硅整流器廠的熱潮,目前全國大大小小的制造硅整流器的半導體廠家就是那時的產物。
1.2逆變器時代
七十年代出現了世界范圍的能源危機,交流電機變頻惆速因節能效果顯著而迅速發展。變頻調速的關鍵技術是將直流電逆變為0~100Hz的交流電。在七十年代到八十年代,隨著變頻調速裝置的普及,大功率逆變用的晶閘管、巨型功率晶體管(GTR)和門極可關斷晶閘管(GT0)成為當時電力電子器件的主角。類似的應用還包括高壓直流輸出,靜止式無功功率動態補償等。這時的電力電子技術已經能夠實現整流和逆變,但工作頻率較低,僅局限在中低頻范圍內。
1.3變頻器時代
進入八十年代,大規模和超大規模集成電路技術的迅猛發展,為現代電力電子技術的發展奠定了基礎。將集成電路技術的精細加工技術和高壓大電流技術有機結合,出現了一批全新的全控型功率器件、首先是功率M0SFET的問世,導致了中小功率電源向高頻化發展,而后絕緣門極雙極晶體管(IGBT)的出現,又為大中型功率電源向高頻發展帶來機遇。MOSFET和IGBT的相繼問世,是傳統的電力電子向現代電力電子轉化的標志。據統計,到1995年底,功率M0SFET和GTR在功率半導體器件市場上已達到平分秋色的地步,而用IGBT代替GTR在電力電子領域巳成定論。新型器件的發展不僅為交流電機變頻調速提供了較高的頻率,使其性能更加完善可靠,而且使現代電子技術不斷向高頻化發展,為用電設備的高效節材節能,實現小型輕量化,機電一體化和智能化提供了重要的技術基礎。
2.現代電力電子的應用領域
2.1計算機高效率綠色電源
高速發展的計算機技術帶領人類進入了信息社會,同時也促進了電源技術的迅速發展。八十年代,計算機全面采用了開關電源,率先完成計算機電源換代。接著開關電源技術相繼進人了電子、電器設備領域。
計算機技術的發展,提出綠色電腦和綠色電源。綠色電腦泛指對環境無害的個人電腦和相關產品,綠色電源系指與綠色電腦相關的高效省電電源,根據美國環境保護署l992年6月17日"能源之星"計劃規定,桌上型個人電腦或相關的設備,在睡眠狀態下的耗電量若小于30瓦,就符合綠色電腦的要求,提高電源效率是降低電源消耗的根本途徑。就目前效率為75%的200瓦開關電源而言,電源自身要消耗50瓦的能源。
2.2通信用高頻開關電源
通信業的迅速發展極大的推動了通信電源的發展。高頻小型化的開關電源及其技術已成為現代通信供電系統的主流。在通信領域中,通常將整流器稱為一次電源,而將直流-直流(DC/DC)變換器稱為二次電源。一次電源的作用是將單相或三相交流電網變換成標稱值為48V的直流電源。目前在程控交換機用的一次電源中,傳統的相控式穩壓電源己被高頻開關電源取代,高頻開關電源(也稱為開關型整流器SMR)通過MOSFET或IGBT的高頻工作,開關頻率一般控制在50-100kHz范圍內,實現高效率和小型化。近幾年,開關整流器的功率容量不斷擴大,單機容量己從48V/12.5A、48V/20A擴大到48V/200A、48V/400A。
因通信設備中所用集成電路的種類繁多,其電源電壓也各不相同,在通信供電系統中采用高功率密度的高頻DC-DC隔離電源模塊,從中間母線電壓(一般為48V直流)變換成所需的各種直流電壓,這樣可大大減小損耗、方便維護,且安裝、增加非常方便。一般都可直接裝在標準控制板上,對二次電源的要求是高功率密度。因通信容量的不斷增加,通信電源容量也將不斷增加。
2.3直流-直流(DC/DC)變換器
DC/DC變換器將一個固定的直流電壓變換為可變的直流電壓,這種技術被廣泛應用于無軌電車、地鐵列車、電動車的無級變速和控制,同時使上述控制獲得加速平穩、快速響應的性能,并同時收到節約電能的效果。用直流斬波器代替變阻器可節約電能(20~30)%。直流斬波器不僅能起調壓的作用(開關電源),同時還能起到有效地抑制電網側諧波電流噪聲的作用。
通信電源的二次電源DC/DC變換器已商品化,模塊采用高頻PWM技術,開關頻率在500kHz左右,功率密度為5W~20W/in3。隨著大規模集成電路的發展,要求電源模塊實現小型化,因此就要不斷提高開關頻率和采用新的電路拓撲結構,目前已有一些公司研制生產了采用零電流開關和零電壓開關技術的二次電源模塊,功率密度有較大幅度的提高。
2.4不間斷電源(UPS)
不間斷電源(UPS)是計算機、通信系統以及要求提供不能中斷場合所必須的一種高可靠、高性能的電源。交流市電輸入經整流器變成直流,一部分能量給蓄電池組充電,另一部分能量經逆變器變成交流,經轉換開關送到負載。為了在逆變器故障時仍能向負載提供能量,另一路備用電源通過電源轉換開關來實現。
現代UPS普遍了采用脈寬調制技術和功率M0SFET、IGBT等現代電力電子器件,電源的噪聲得以降低,而效率和可靠性得以提高。微處理器軟硬件技術的引入,可以實現對UPS的智能化管理,進行遠程維護和遠程診斷。目前在線式UPS的最大容量已可作到600kVA。超小型UPS發展也很迅速,已經有0.5kVA、lkVA、2kVA、3kVA等多種規格的產品。
2.5變頻器電源
變頻器電源主要用于交流電機的變頻調速,其在電氣傳動系統中占據的地位日趨重要,已獲得巨大的節能效果。變頻器電源主電路均采用交流-直流-交流方案。工頻電源通過整流器變成固定的直流電壓,然后由大功率晶體管或IGBT組成的PWM高頻變換器,將直流電壓逆變成電壓、頻率可變的交流輸出,電源輸出波形近似于正弦波,用于驅動交流異步電動機實現無級調速。
國際上400kVA以下的變頻器電源系列產品已經問世。八十年代初期,日本東芝公司最先將交流變頻調速技術應用于空調器中。至1997年,其占有率已達到日本家用空調的70%以上。變頻空調具有舒適、節能等優點。國內于90年代初期開始研究變頻空調,96年引進生產線生產變頻空調器,逐漸形成變頻空調開發生產熱點。預計到2000年左右將形成。變頻空調除了變頻電源外,還要求有適合于變頻調速的壓縮機電機。優化控制策略,精選功能組件,是空調變頻電源研制的進一步發展方向。
2.6高頻逆變式整流焊機電源
高頻逆變式整流焊機電源是一種高性能、高效、省材的新型焊機電源,代表了當今焊機電源的發展方向。由于IGBT大容量模塊的商用化,這種電源更有著廣闊的應用前景。
逆變焊機電源大都采用交流-直流-交流-直流(AC-DC-AC-DC)變換的方法。50Hz交流電經全橋整流變成直流,IGBT組成的PWM高頻變換部分將直流電逆變成20kHz的高頻矩形波,經高頻變壓器耦合,整流濾波后成為穩定的直流,供電弧使用。
由于焊機電源的工作條件惡劣,頻繁的處于短路、燃弧、開路交替變化之中,因此高頻逆變式整流焊機電源的工作可靠性問題成為最關鍵的問題,也是用戶最關心的問題。采用微處理器做為脈沖寬度調制(PWM)的相關控制器,通過對多參數、多信息的提取與分析,達到預知系統各種工作狀態的目的,進而提前對系統做出調整和處理,解決了目前大功率IGBT逆變電源可靠性。
國外逆變焊機已可做到額定焊接電流300A,負載持續率60%,全載電壓60~75V,電流調節范圍5~300A,重量29kg。
2.7大功率開關型高壓直流電源
大功率開關型高壓直流電源廣泛應用于靜電除塵、水質改良、醫用X光機和CT機等大型設備。電壓高達50~l59kV,電流達到0.5A以上,功率可達100kW。
自從70年代開始,日本的一些公司開始采用逆變技術,將市電整流后逆變為3kHz左右的中頻,然后升壓。進入80年代,高頻開關電源技術迅速發展。德國西門子公司采用功率晶體管做主開關元件,將電源的開關頻率提高到20kHz以上。并將干式變壓器技術成功的應用于高頻高壓電源,取消了高壓變壓器油箱,使變壓器系統的體積進一步減小。
國內對靜電除塵高壓直流電源進行了研制,市電經整流變為直流,采用全橋零電流開關串聯諧振逆變電路將直流電壓逆變為高頻電壓,然后由高頻變壓器升壓,最后整流為直流高壓。在電阻負載條件下,輸出直流電壓達到55kV,電流達到15mA,工作頻率為25.6kHz。
2.8電力有源濾波器
傳統的交流-直流(AC-DC)變換器在投運時,將向電網注入大量的諧波電流,引起諧波損耗和干擾,同時還出現裝置網側功率因數惡化的現象,即所謂"電力公害",例如,不可控整流加電容濾波時,網側三次諧波含量可達(70~80)%,網側功率因數僅有0.5~0.6。
電力有源濾波器是一種能夠動態抑制諧波的新型電力電子裝置,能克服傳統LC濾波器的不足,是一種很有發展前途的諧波抑制手段。濾波器由橋式開關功率變換器和具體控制電路構成。與傳統開關電源的區別是:(l)不僅反饋輸出電壓,還反饋輸入平均電流;(2)電流環基準信號為電壓環誤差信號與全波整流電壓取樣信號之乘積。
2.9分布式開關電源供電系統
分布式電源供電系統采用小功率模塊和大規模控制集成電路作基本部件,利用最新理論和技術成果,組成積木式、智能化的大功率供電電源,從而使強電與弱電緊密結合,降低大功率元器件、大功率裝置(集中式)的研制壓力,提高生產效率。
八十年代初期,對分布式高頻開關電源系統的研究基本集中在變換器并聯技術的研究上。八十年代中后期,隨著高頻功率變換技術的迅述發展,各種變換器拓撲結構相繼出現,結合大規模集成電路和功率元器件技術,使中小功率裝置的集成成為可能,從而迅速地推動了分布式高頻開關電源系統研究的展開。自八十年代后期開始,這一方向已成為國際電力電子學界的研究熱點,論文數量逐年增加,應用領域不斷擴大。
分布供電方式具有節能、可靠、高效、經濟和維護方便等優點。已被大型計算機、通信設備、航空航天、工業控制等系統逐漸采納,也是超高速型集成電路的低電壓電源(3.3V)的最為理想的供電方式。在大功率場合,如電鍍、電解電源、電力機車牽引電源、中頻感應加熱電源、電動機驅動電源等領域也有廣闊的應用前景。
3.高頻開關電源的發展趨勢
在電力電子技術的應用及各種電源系統中,開關電源技術均處于核心地位。對于大型電解電鍍電源,傳統的電路非常龐大而笨重,如果采用高頓開關電源技術,其體積和重量都會大幅度下降,而且可極大提高電源利用效率、節省材料、降低成本。在電動汽車和變頻傳動中,更是離不開開關電源技術,通過開關電源改變用電頻率,從而達到近于理想的負載匹配和驅動控制。高頻開關電源技術,更是各種大功率開關電源(逆變焊機、通訊電源、高頻加熱電源、激光器電源、電力操作電源等)的核心技術。
3.1高頻化
理論分析和實踐經驗表明,電氣產品的變壓器、電感和電容的體積重量與供電頻率的平方根成反比。所以當我們把頻率從工頻50Hz提高到20kHz,提高400倍的話,用電設備的體積重量大體下降至工頻設計的5~l0%。無論是逆變式整流焊機,還是通訊電源用的開關式整流器,都是基于這一原理。同樣,傳統"整流行業"的電鍍、電解、電加工、充電、浮充電、電力合閘用等各種直流電源也可以根據這一原理進行改造,成為"開關變換類電源",其主要材料可以節約90%或更高,還可節電30%或更多。由于功率電子器件工作頻率上限的逐步提高,促使許多原來采用電子管的傳統高頻設備固態化,帶來顯著節能、節水、節約材料的經濟效益,更可體現技術含量的價值。
3.2模塊化
模塊化有兩方面的含義,其一是指功率器件的模塊化,其二是指電源單元的模塊化。我們常見的器件模塊,含有一單元、兩單元、六單元直至七單元,包括開關器件和與之反并聯的續流二極管,實質上都屬于"標準"功率模塊(SPM)。近年,有些公司把開關器件的驅動保護電路也裝到功率模塊中去,構成了"智能化"功率模塊(IPM),不但縮小了整機的體積,更方便了整機的設計制造。實際上,由于頻率的不斷提高,致使引線寄生電感、寄生電容的影響愈加嚴重,對器件造成更大的電應力(表現為過電壓、過電流毛刺)。為了提高系統的可靠性,有些制造商開發了"用戶專用"功率模塊(ASPM),它把一臺整機的幾乎所有硬件都以芯片的形式安裝到一個模塊中,使元器件之間不再有傳統的引線連接,這樣的模塊經過嚴格、合理的熱、電、機械方面的設計,達到優化完美的境地。它類似于微電子中的用戶專用集成電路(ASIC)。只要把控制軟件寫入該模塊中的微處理器芯片,再把整個模塊固定在相應的散熱器上,就構成一臺新型的開關電源裝置。由此可見,模塊化的目的不僅在于使用方便,縮小整機體積,更重要的是取消傳統連線,把寄生參數降到最小,從而把器件承受的電應力降至最低,提高系統的可靠性。這樣,不但提高了功率容量,在有限的器件容量的情況下滿足了大電流輸出的要求,而且通過增加相對整個系統來說功率很小的冗余電源模塊,極大的提高系統可靠性,即使萬一出現單模塊故障,也不會影響系統的正常工作,而且為修復提供充分的時間。3.3數字化
在傳統功率電子技術中,控制部分是按模擬信號來設計和工作的。在六、七十年代,電力電子技術擬電路基礎上的。但是,現在數字式信號、數字電路顯得越來越重要,數字信號處理技術日趨完善成熟,顯示出越來越多的優點:便于計算機處理控制、避免模擬信號的畸變失真、減小雜散信號的干擾(提高抗干擾能力)、便于軟件包調試和遙感遙測遙調,也便于自診斷、容錯等技術的植入。所以,在八、九十年代,對于各類電路和系統的設計來說,模擬技術還是有用的,特別是:諸如印制版的布圖、電磁兼容(EMC)問題以及功率因數修正(PFC)等問題的解決,離不開模擬技術的知識,但是對于智能化的開關電源,需要用計算機控制時,數字化技術就離不開了。
3.4綠色化
電源系統的綠色化有兩層含義:首先是顯著節電,這意味著發電容量的節約,而發電是造成環境污染的重要原因,所以節電就可以減少對環境的污染;其次這些電源不能(或少)對電網產生污染,國際電工委員會(IEC)對此制定了一系列標準,如IEC555、IEC917、IECl000等。事實上,許多功率電子節電設備,往往會變成對電網的污染源:向電網注入嚴重的高次諧波電流,使總功率因數下降,使電網電壓耦合許多毛刺尖峰,甚至出現缺角和畸變。20世紀末,各種有源濾波器和有源補償器的方案誕生,有了多種修正功率因數的方法。
總而言之,電力電子及開關電源技術因應用需求不斷向前發展,新技術的出現又會使許多應用產品更新換代,還會開拓更多更新的應用領域。開關電源高頻化、模塊化、數字化、綠色化等的實現,將標志著這些技術的成熟,實現高效率用電和高品質用電相結合。這幾年,隨著通信行業的發展,以開關電源技術為核心的通信用開關電源,僅國內有20多億人民幣的市場需求,吸引了國內外一大批科技人員對其進行開發研究。開關電源代替線性電源和相控電源是大勢所趨,因此,同樣具有幾十億產值需求的電力操作電源系統的國內市場正在啟動,并將很快發展起來。還有其它許多以開關電源技術為核心的專用電源、工業電源正在等待著人們去開發。
參考文獻:
[1]林渭勛:淺談半導體高頻電力電子技術,電力電子技術選編,浙江大學,384-390,1992。
1修改人才培養方案人才培養方案制定得是否合理,關系到本專業的生存和發展。隨著現代科學技術的迅猛發展,電類的各專業的界線越來越模糊,各學科相互交叉、相互滲透,電氣專業傳統的“發電、輸電、用電”知識結構已經不能滿足當今人才培養要求。因此,對人才培養方案和教學計劃要進行適當的修改和調整。由于電氣工程及其自動化專業是一個強電和弱電相結合的寬口徑專業,而電力電子技術是諸多學科相互交集的學科,是由基礎課到專業課過渡的橋梁和紐帶,是強電和弱電的有機結合。因此,在修改和調整人才培養方案和教學計劃時,要體現出電氣專業的“以強電為主、弱電為輔、強弱協調”的主導思想,加大教學力度,要意識到“電力電子技術”課程在電氣工程及其自動化專業教學中重要性和必要性,以拓寬學生的知識面,提高學生的工程實踐能力和創新能力以及擴大學生畢業后的就業面。
2教材內容的合理取舍任課教師要選擇一本合適的電力電子技術課程教材作為主教材,再參考其他的輔助教材,取長補短,主講教師應具有寬闊的知識面及豐富的電力電子工程實踐經驗,注重應用型人才培養目標。教材的內容既有豐富的理論知識,還要注重工程實際的應用,要體現電力電子技術發展的新技術,也要體現出“電力電子技術”課程是基礎課到專業課平穩過渡的橋梁,使教材內容更符合二本院校電氣工程及其自動化專業的人才培養的要求。主教材中除重點講授交流變直流、直流變交流、直流變直流、交流變交流四大類基本變流電路及它們的組合之外,還要聯系當今電力電子技術的發展趨勢及應用情況,注重電力電子技術在電力系統及其他工程領域中的應用,注重主電路設計、驅動電路設計、保護電路設計、參數計算及元器件選擇,還應該適當介紹SVC、SVG、高壓直流輸電、開關電源、UPS電源、感應加熱電源、光伏逆變器等裝置的工作原理和實際應用情況,以適應電氣工程及其自動化專業寬口徑就業要求。
3課堂教學方式改革教學過程中應以學生為主,教師為輔,避免一人堂和填鴨式教學方法,針對教學內容和學生的具體情況組織安排教學內容。由于“電力電子技術”課程的教學內容繁多,課堂教學中需要繪制大量的電路圖和波形圖,以及諸多公式推導及各種參數計算等。由于課程學時少而教學內容又多,僅僅依靠傳統的黑板加粉筆的教學方式顯然是達不到教學效果的,所以多媒體技術逐漸走進了“電力電子技術”的課堂教學,大大地提高了課堂教學效果。這里需要強調的是,多媒體教學的引進并非完全取消黑板加粉筆的課堂教學方式,二者應該相互協調、相輔相成,各有各的長處。對于復雜的電路及波形的繪制和分析,可以充分利用多媒體的音容并茂的特點,使學生更容易理解和掌握電路的基本原理和工作過程,如以flas的方式顯示電力電子器件的開通和關斷過程、過電流和過電壓的產生過程、電路的輸入輸出電壓和電流波形等,使學生感到生動而有趣,使學生的課堂學習不再枯燥無味;而對于簡單電路的分析以及例題習題的講解,還是黑板加粉筆的方式顯得更簡單便捷,更具親和力,加強了教師與學生間的互動和情感交流。總之,課堂教學十分重要,教師要根據自身的特點、教學內容、學生的素質,充分利用現代化教學手段及互聯網資源,在有限的課堂教學時間內,最大程度地使學生理解和吸收所學的知識。
4改革實驗教學環節為了提高學生的工程實踐能力,對原有的電力電子實驗室設備進行了更新和改造,引進近幾年內較為先進的電力電子實驗設備,對原有的驗內容和實驗計劃進行了修改和調整,盡量減少簡單的驗證性實驗,增大設計性和綜合性實驗的比例,根據專業的特點和理論教學情況組織實驗教學。我院現有的電力電子綜合實驗室可開出多種實驗,囊括了AC/DC、DC/AC/、AC/AC、DC/DC四大電力變換所需的實驗,如整流及有源逆變實驗、交流調壓及交流調功實驗、直流斬波實驗、無源逆變變實驗等。為了培養學生的科技創新意識,還增設了開放性實驗和創新性實驗,加強了教師與學生間的知識交流,也使電力電子課程的實驗教學延伸到課外,對教學時間的不足起了一定程度的彌補作用;同時,在我院的大學生電子挑戰杯大賽中,部分學生的競賽題目與電力電子技術有關,提高了學生的電力電子技能。另外,我院每個學期舉行教師實踐技能大賽,有相當一部分競賽題目與電力電子技術有關,大大提高了教師的電力電子技術實踐能力和實驗教學水平。
5將Matlab仿真軟件引進課堂教學和實驗教學Matlab仿真軟件是各院校普遍開出的課程,將Matlab仿真軟件與電力電子技術課程相結合,在課堂上,利用Matlab仿真軟豐富友好的圖形界面,使學生更直觀地掌握所學的知識,也避免了教師畫電路圖、波形圖的繁瑣及時間的浪費;將Matlab仿真軟件與電力電子技術課程實驗相結合,是原有的實驗操作的有益補充,同時又具備原有實驗裝置不具備的優點,如解決設備費用高、實驗所花時間長、危險性大的缺點。而利用仿真教學工具代替實際元件在計算機上進行仿真,既不擔心元器件損壞,也沒有任何危險,學生完全可以在無人指導的情況下,在任何地點的計算機上自行完成電力電子電路的仿真實驗,在此基礎上再進行適當的真實性實驗,這樣不僅激發了學生的學習興趣,更重要的是提高了學生發現問題、解決問題和實際動手的能力,會收到事半功倍的實訓效果。
6課程設計環節的改革“電力電子技術”課程教學改革后,在課程教學的后期,增加了課程設計環節,由主講教師布置該課程的設計任務,為避免雷同,每人一題,主要以電力電子技術的四大電力變換為核心,結合工程實際,根據給出的技術參數和技術指標,要求學生綜合運用所學的相關知識,設計出總體方案、主電路圖、驅動電路、保護電路等,并進行相關參數計算及元器件選擇。較簡單的題目,要求制作電路板和元器件焊接,并使用實驗室的儀器和工具進行調試;較復雜的題目要求用實驗室的實驗設備驗證或進行matlab仿真,最終以論文的形式完成課程設計,并進行課程設計答辯。課程設計環節的增加,拓寬了學生的知識面,提高了學生獨立分析問題、解決問題的能力,是理論與實踐相結合的有益補充,同時為后期的畢業設計、就業及將來打下基礎。
7畢業設計環節的改革為了提高電氣專業學生的電力電子技術理論知識和工程實踐能力,近幾年來,在電氣工程及其自動化專業畢業實習過程中,除了到發電廠、變電所參觀實習外,有相當一部分學生到電力電子裝置的廠家實習;有時也請電力電子產品的專家學者做專題報告。在畢業設計選題方面,除了發電廠、變電所、繼電保護、電氣照明等傳統設計題目外,許多教師在本科畢業設計中也增加了許多有關電力電子技術方面的設計課目,如感應加熱電源、大功率開關電源、UPS電源、光伏逆變并網系統、SVC、SVG、高壓直流輸電等方面的題目。有些設計題目還獲得了省級或校級優秀學士學位論文。
二、結束語
由王兆安等主編和機械工業出版社出版的《電力電子技術》,第三章的三相半波可控整流電路是學習三相橋式全控整流電路的基礎[3],如果理解并掌握其工作原理,對學好其他更加復雜的整流電路非常重要[3],三相半波可控整流電路的常規課堂教學如下:首先教師給出三相半波可控整流電路原理圖(如圖1所示),為了便于教學過程分析,在圖1中所示的電路負載為純電阻。圖1中變壓器二次側接成星型,是為了得到零線,而一次側接成三角形,目的是為了避免3次諧波流入電網。三個晶閘管VT1、VT2和VT3分別接入a、b、c三相電源,它們的陰極連在一起,稱為共陰極接法,這種接法觸發電路有公共端,連線方便。假設將電路中的晶閘管VT1、VT2和VT3換作二極管VD1、VD2和VD3,該電路就成為三相半波不可控整流電路。此時,三個二極管VD1、VD2和VD3對應的相電壓中哪一個的值最大,則該相所對應的二極管導通,并使另兩相的二極管承受反壓關斷,輸出的整流電壓即為該相的相電壓,電路波形如圖2(a)所示。在一個周期中,器件工作情況如下:在ωt1~ωt2期間,a相電壓最高,VD1導通,ud=ua;在ωt2~ωt3期間,b相電壓最高,VD2導通,ud=ub;在ωt3~ωt4期間,c相電壓最高,VD3導通,ud=uc,此后,在一個周期相當于ωt1的位置即ωt4時刻,VD1又導通,重復前一周期的工作情況。如此,一周期中VD1、VD2和VD3輪流導通,每管各導通120°,波形為三個相電壓的正半周期的包絡線。在相電壓ωt1、ωt2和ωt3的交點處,均出現了二極管換相,即電流由一個二極管向另一個二極管轉移,稱這些交點為自然換相點。自然換相點是各相晶閘管能觸發導通的最早時刻,將其作為計算各相晶閘管觸發角α的起點,即α=0°,要改變觸發角只能是在此基礎上增大它。若在自然換相點處觸發相應的晶閘管導通,則電路的工作情況與二極管整流工作情況一樣。當觸發角α<30°時,負載電流處于連續的狀態,各相導通120°。當α=30°時,負載電流處于連續和斷續的臨界狀態,各相仍導電120°。如果α>30°,當導通一相的相電壓過零變負時,該相晶閘管關斷。此時下一相晶閘管雖然承受正向電壓,但它的觸發脈沖還未到,不會導通,因此輸出負載電流出現斷續的情況。若α角繼續增大,整流電壓越來越小,α=150°時,整流輸出電壓為零。其中圖2(a)、(b)和(c)所示的波形為觸發延遲角α分別為0°、30°和60°的三相輸入交流電壓波形、觸發脈沖波形、輸出負載波形、晶閘管的電流和電壓波形。從圖2可以很清楚地看出改變觸發延遲角α可以改變輸出電壓的波形,這就是三相半波可控整流電路的工作原理,以上的教學過程都是大部分教師采用的常規教學方法,這種方法的最大缺點就是教學過程平淡無奇,對學生沒有任何吸引力,另外海量知識的講解過程中很容易讓學生反感,使他們不愿意認真聽課,造成的直接后果就是課堂教學質量差。此外在常規教學中,這些理論知識都是教師采用直接灌輸的方法,向學生傳遞知識,很多學生會提出這樣的想法,任課教師有沒有辦法在課堂上驗證所講的理論知識,如果能的話,那肯定能吸引學生聽課,從而提高學生課堂聽課效率。為此,筆者嘗試把MATLAB/Simulink計算機仿真軟件引入課堂教學過程中,取得不錯的教學效果。
2MATLAB/Simulink在三相橋式全控整流電路的應用
筆者在電力電子技術課堂教學中可以直接在MATLAB/Simulink畫出三相半波可控整流電路,其實也就是搭建其仿真模型,其過程十分簡單,不需占用很多課堂教學時間,最重要的是這是一種新鮮事物,可吸引學生的注意力,增加他們的好奇心,間接地可以提高課堂教學質量。三相半波可控整流電路的仿真模型如圖3所示[4-6]。仿真結果如圖4所示,其中圖4(a)、(b)和(c)中的每個波形從上到下分別為觸發脈沖波形仿真波形、晶閘管電流仿真波形、晶閘管電壓仿真波形、輸入負載電壓和電流仿真波形。很容易看出,圖4中的各個仿真波形跟圖2所示的理論分析波形完全一致。在這個教學過程中可以得出以下結論:第一,將計算機仿真軟件引入課堂教學中達到了實驗的目的,在教學過程中直接對所學理論知識進行驗證,可以完全等同于在實驗室通過實驗方法驗證理論的正確性,從而節省了實驗資源。第二,將計算機仿真軟件引入課堂教學中,可以改變傳統的授課方式,改變“滿堂灌”的教學方式,更能吸引學生的注意力,激發他們的學習興趣,更重要的是在課后他們可以自己動手通過計算機仿真軟件對當天所學的知識進行驗證,其實這個過程就是學生學習和掌握所學課堂知識的過程,如果任課教師布置一些任務,學生就可以做到學以致用,達到培養人才的目的。
3結論
關鍵詞:直流輸電;電力電子;發電機
一、前言
電力電子技術是一個以功率半導體器件、電路技術、計算機技術、現代控制技術為支撐的技術平臺。經過50年的發展歷程,它在傳統產業設備發行、電能質量控制、新能源開發和民用產品等方面得到了越來越廣泛的應用。最成功地應用于電力系統的大功率電力電子技術是直流輸電(HVDC)。自20世紀80年代,柔流輸電(FACTS)概念被提出后,電力電子技術在電力系統中的應用研究得到了極大的關注,多種設備相繼出現。本文介紹了電力電子技術在發電環節中、輸電環節中、在配電環節中的應用和節能環節的運用。
二、電力電子技術的應用
自20世紀80年代,柔流輸電(FACTS)概念被提出后,電力電子技術在電力系統中的應用研究得到了極大的關注,多種設備相繼出現。已有不少文獻介紹和總結了相關設備的基本原理和應用現狀。以下按照電力系統的發電、輸電和配電以及節電環節,列舉電力電子技術的應用研究和現狀。
(一)在發電環節中的應用
電力系統的發電環節涉及發電機組的多種設備,電力電子技術的應用以改善這些設備的運行特性為主要目的。
1大型發電機的靜止勵磁控制
靜止勵磁采用晶閘管整流自并勵方式,具有結構簡單、可靠性高及造價低等優點,被世界各大電力系統廣泛采用。由于省去了勵磁機這個中間慣性環節,因而具有其特有的快速性調節,給先進的控制規律提供了充分發揮作用并產生良好控制效果的有利條件。
2水力、風力發電機的變速恒頻勵磁
水力發電的有效功率取決于水頭壓力和流量,當水頭的變化幅度較大時(尤其是抽水蓄能機組),機組的最佳轉速便隨之發生變化。風力發電的有效功率與風速的三次方成正比,風車捕捉最大風能的轉速隨風速而變化。為了獲得最大有效功率,可使機組變速運行,通過調整轉子勵磁電流的頻率,使其與轉子轉速疊加后保持定子頻率即輸出頻率恒定。此項應用的技術核心是變頻電源。
3發電廠風機水泵的變頻調速
發電廠的廠用電率平均為8%,風機水泵耗電量約占火電設備總耗電量的65%,且運行效率低。使用低壓或高壓變頻器,實施風機水泵的變頻調速,可以達到節能的目的。低壓變頻器技術已非常成熟,國內外有眾多的生產廠家,并不完整的系列產品,但具備高壓大容量變頻器設計和生產能力的企業不多,國內有不少院校和企業正抓緊聯合開發。
(二)在輸電環節中的應用
電力電子器件應用于高壓輸電系統被稱為“硅片引起的第”,大幅度改善了電力網的穩定運行特性。
1直流輸電(HVDC)和輕型直流輸電(HVDCLight)技術
直流輸電具有輸電容量大、穩定性好、控制調節靈活等優點,對于遠距離輸電、海底電纜輸電及不同頻率系統的聯網,高壓直流輸電擁有獨特的優勢。1970年世界上第一項晶閘管換流器,標志著電力電子技術正式應用于直流輸電。從此以后世界上新建的直流輸電工程均采用晶閘管換流閥。
2柔流輸電(FACTS)技術
FACTS技術的概念問世干20世紀80年代后期,是一項基于電力電子技術與現代控制技術對交流輸電系統的阻抗、電壓及相位實施靈活快速調節的輸電技術,可實現對交流輸電功率潮流的靈活控制,大幅度提高電力系統的穩定水平。
20世紀90年代以來,國外在研究開發的基礎上開始將FACTS技術用于實際電力系統工程。其輸出無功的大小,設備結構簡單,控制方便,成本較低,所以較早得到應用。
(三)在配電環節中的應用
配電系統迫切需要解決的問題是如何加強供電可靠性和提高電能質量。電能質量控制既要滿足對電壓、頻率、諧波和不對稱度的要求,還要抑制各種瞬態的波動和干擾。電力電子技術和現代控制技術在配電系統中的應用,即用戶電力(customPower)技術或稱DFACTS技術,是在FACTS各項成熟技術的基礎上發展起來的電能質量控制新技術。可以將DFACTS設備理解為FACTS設備的縮小版,其原理、結構均相同,功能也相似。由于潛在需求巨大,市場介入相對容易,開發投入和生產成本相對較低,隨著電力電子器件價格的不斷降低,可以預期DFACTS設備產品將進入快速發展期。
(四)在節能環節的運用
1變負荷電動機調速運行
電動機本身挖掘節電潛力只是節電的一個方面,通過變負荷電動機的調速技術節電又是另一個方面,只有將二者結合起來,電動機節電方較完善。目前,交流調速在冶金、礦山等部門及社會生活中得到了廣泛的應用。首先是風機、泵類等變負荷機械中采用調速控制代替擋風板或節流閥控制風流量和水流量具有顯著的效果。國外變負荷的風機、水泵大多采用了交流調速,我國正在推廣應用中。
變頻調速的優點是調速范圍廣,精度高,效率高,能實現連續無級調速。在調速過程中轉差損耗小,定子、轉子的銅耗也不大,節電率一般可達30%左右。其缺點主要為:成本高,產生高次諧波污染電網。
2減少無功損耗,提高功率因數
在電氣設備中,變壓器和交流異步電動機等都屬于感性負載,這些設備在運行時不僅消耗有功功率,而且還消耗無功功率。因此,無功電源與有功電源一樣,是保證電能質量不可缺少的部分。在電力系統中應保持無功平衡,否則,將會使系統電壓降低,設備破壞,功率因數下降,嚴懲時會引起電壓崩潰,系統解裂,造成大面積停電事故。所以,當電力網或電氣設備無功容量不足時,應增裝無功補償設備,提高設備功率因數。
【論文摘要】本文首先探討了近似計算在靜態分析中的應用問題,其次分析了納米電子技術急需解決的若干關鍵問題和交互式電子技術應用手冊,最后電子技術在時間與頻率標準中的應用進行了相關的研究。因此,本文具有深刻的理論意義和廣泛的實際應用價值。
一、近似計算在靜態分析中的應用
在電子技術中應運中,近似計算貫穿其始終。然而,沒有近似計算是不可想象的。而精確計算在電子技術中往往行不通,也沒有其必要。盡管近似計算會引入一定的誤差,但這個誤差控制得好,不會對分析其它電路產生大的影響。所以關鍵在于我們如何掌握,特別是如何應用近似計算。
在工作點穩定電路中的應用要進行靜態分析,就必須求出三極管的基電壓,必須忽略三極管靜態基極電流。這樣,我們得到三極管的基射電子的相關過程及結論。
二、納米電子技術急需解決的若干關鍵問題
由于納米器件的特征尺寸處于納米量級,因此,其機理和現有的電子元件截然不同,理論方面有許多量子現象和相關問題需要解決,如電子在勢阱中的隧穿過程、非彈性散射效應機理等。盡管如此,納米電子學中急需解決的關鍵問題主要還在于納米電子器件與納米電子電路相關的納米電子技術方面,其主要表現在以下幾個方面。
(1)納米Si基量子異質結加工
要繼續把現有的硅基電子器件縮小到納米尺度,最直截了當的方法是采用外延、光刻等技術制造新一代的類似層狀蛋糕的納米半導體結構。其中,不同層通常是由不同勢能的半導體材料制成的,構建成納米尺度的量子勢阱,這種結構稱作“半導體異質結”。
(2)分子晶體管和導線組裝納米器件即使知道如何制造分子晶體管和分子導線,但把這些元件組裝成一個可以運轉的邏輯結構仍是一個非常棘手的難題。一種可能的途徑是利用掃描隧道顯微鏡把分子元件排列在一個平面上;另一種組裝較大電子器件的可能途徑是通過陣列的自組裝。盡管,PurdueUniversity等研究機構在這個方向上取得了可喜的進展,但該技術何時能夠走出實驗室進入實用,仍無法斷言。
(3)超高密度量子效應存儲器
超高密度存儲量子效應的電子“芯片”是未來納米計算機的主要部件,它可以為具備快速存取能力但沒有可動機械部件的計算機信息系統提供海量存儲手段。但是,有了制造納米電子邏輯器件的能力后,如何用這種器件組裝成超高密度存儲的量子效應存儲器陣列或芯片同樣給納米電子學研究者提出了新的挑戰。
(4)納米計算機的“互連問題”
一臺由數萬億的納米電子元件以前所未有的密集度組裝成納米計算機注定需要巧妙的結構及合理整體布局,而整體結構問題中首當其沖需要解決的就是所謂的“互連問題”。換句話說,就是計算結構中信息的輸入、輸出問題。納米計算機要把海量信息存儲在一個很小的空間內,并極快地使用和產生信息,需要有特殊的結構來控制和協調計算機的諸多元件,而納米計算元件之間、計算元件與外部環境之間需要有大量的連接。就現有傳統計算機設計的微型化而言,由于電線之間要相互隔開以避免過熱或“串線”,這樣就有一些幾何學上的考慮和限制,連接的數量不可能無限制地增加。因此,納米計算機導線間的量子隧穿效應和導線與納米電子器件之間的“連接”問題急需解決。
(5)納米/分子電子器件制備、操縱、設計、性能分析模擬環境
當前,分子力學、量子力學、多尺度計算、計算機并行技術、計算機圖形學已取得快速發展,利用這些技術建立一個能夠完成納米電子器件制備、操縱、設計與性能分析的模擬虛擬環境,并使納米技術研究人員獲得虛擬的體驗已成為可能。但由于現有計算機的速度、分子力學與量子力學算法的效率等問題,目前建立這種迅速、敏感、精細的量子模擬虛擬環境還存在巨大困難。
三、交互式電子技術手冊
交互式電子技術手冊經歷了5個發展階段,根據美國國防部的定義:加注索引的掃描頁圖、滾動文檔式電子技術手冊、線性結構電子技術手冊、基于數據庫的電子技術手冊和集成電子技術手冊。目前真正意義上的集成了人工智能、故障診斷的第5類集成電子技術手冊并不存在,大多數電子技術手冊基本上位于第4類及其以下的水平。需要聲明的是,各類電子技術手冊雖然代表不同的發展階段,但是各有優點,較低級別的電子技術手冊目前仍然有著各自的應用價值。由于類以上的電子技術手冊在信息的組織、管理、傳遞、獲取方面具有明顯的優點。
簡單的說,電子技術手冊就是技術手冊的數字化。為了獲取信息的方便,數字化后的數據需要一個良好的組織管理和提供給用戶的形式,電子技術手冊的發展就是圍繞這一過程來進行的。
四、電子技術在時間與頻率標準中的應用
時間和頻率是描述同一周期現象的兩個參數,可由時間標準導出頻率標準,兩者可共用的一個基準。
1952年國際天文協會定義的時間標準是基于地球自轉周期和公轉周期而建立的,分別稱為世界時(UT)和歷書時(ET)。這種基于天文方面的宏觀計時標準,設備龐大,操作麻煩,精度僅達10-9。隨著電子技術與微波光譜學的發展,產生了量子電子學、激光等新技術,由此出現了一種新穎的頻率標準——量子頻率標準。這種頻率標準是利用原子能級躍遷時所輻射的電磁波頻率作為頻率標準。目前世界各國相繼作成各種量子頻率標準,如(133Cs)頻標、銣原子頻標、氫原子作成的氫脈澤頻標、甲烷飽和以及吸收氦氖激光頻標等等。這樣做后,將過去基于宏觀的天體運動的計時標準,改變成微觀的原子本身結構運動的時間基準。這一方面使設備大為簡化,體積、重量大減小;另一方面使頻率標準的穩定度大為提高(可達10-12—10-14量級,即30萬年——300萬年差1秒)。1967年第13屆國際計量大會正式通過決議,規定:“一秒等于133Cs原子基態兩超精細能級躍遷的9192631770個周期所持續的時間”。該時間基準,發展了高精度的測頻技術,大大有助于宇宙航行和空間探索,加速了現代微波技術和雷達、激光技術等的發展。而激光技術和電子技術的發展又為長度計量提供了新的測試手段。
總之,在探討了近似計算在靜態分析中的應用問題、納米電子技術急需解決的若干關鍵問題和交互式電子技術應用手冊后,廣大科技工作者對電子技術在時間與頻率標準中的應用知識的初步了解和認識。在當代高科技產業日漸繁榮,尖端信息普遍進入我們生活之中的同時,國家經濟建設和和諧社會的構建離不開我們科技工作者對新理論的學習和新技術的應用,因此說,本文具有深刻的理論意義和廣泛的實際應用價值是不足為虛的。
【參考文獻】
[1]張凡,殷承良《現代汽車電子技術及其在儀表中的應用[J]客車技術與研究》,2006(01)。
[2]李建《汽車電子技術的應用狀況與發展趨勢》[J],《汽車運用》,2006(09)。
[3]陶琦《國際汽車電子技術縱覽》[J],《電子設計應用》,2005(05)。
[4]劉艷梅《電子技術在現代汽車上的發展與應用》[J],《中國科技信息》,2006(01)。
[5]魏萬云《淺談當代電子技術的發展》[J],《中國科技信息》,2005(19)。
現代企業的社會化大生產逐步由過去的勞動密集型走向自動化、程序化。計算機管理廣泛應用于企業生產管理活動的方方面面。計算機進行產品的輔助設計(CAD)、輔助制造(CAM)和輔助數控編程(CAPP),計算機參與企業管理系統的制作文件、統計和數據處理,進而發展到把集合3C的產品數據管理系統(PDM)與有關人、財、物、產、供、銷的管理信息系統(MIS)和制造資源計劃系統(MRP)等組合在一起的企業信息集成系統。
置身于企業信息集成系統中,企業檔案工作者將發現企業檔案發生了巨大變化。
首先是企業檔案載體的轉變。在企業實現計算機全程管理后,適時實現了信息數據的遠近傳遞交換和處理。在企業各項管理活動中,電子文件以其快捷的辦文進度和傳遞速度逐步取代了紙質文件。電子圖紙也以手工制作所無可比擬的優勢大量出現。通過計算機輔助設計使產品圖紙的設計、存儲、查詢和修改變得快捷又方便。例如生產或開發一項較大項目的產品就需產生上萬份的圖紙,而其中許多又要承襲老產品的大部分成果,因此電子圖紙顯示了其比紙質圖紙更旺盛的生命力,保存電子圖紙要比保存底圖方便、省時、省力并且有意義得多。
其次是企業檔案的分類變化。舊有的企業關于文書檔案、科技檔案、產品檔案、基建檔案、會計檔案、人事檔案等傳統分類方案將被打破,取而代之以企業信息集成系統中各個管理模塊、流程的設置。一份完整的檔案信息分散在幾個管理系統中,計算機依照規定指令根據工作目標隨時設立和調整類目。各企業檔案信息的分類不盡相同,但可以肯定的是計算機管理過程中企業的檔案分類更能貼近企業的生產、經營、管理等各方面狀況,分類也將更詳細、更科學、更規范。
此外,在企業檔案接收和保管上也有所改變。以往的企業檔案工作者以參加科研產品鑒定、重要設備開箱及重要建設項目、技術改造竣工驗收做為對其企業檔案的監督、指導和接收就顯得有些滯后了。“在電子環境中,如果檔案人員不積極介入文件的形成和保管過程,文件很可能不存在或至少不可能被鑒定、保存、編目或者提供利用”。這就是說企業檔案人員如果不進入到企業信息集成系統中去,則很難掌握到企業信息的核心部分甚至接收不到檔案。的確,無時無刻不在產生的電子文件、電子圖紙使企業檔案工作者再也無法坐等檔案的最后形成與歸檔了。他們必須在產生電子文件的源頭就行使檔案的監督指導職能。參照國家有關文件制定出本企業的《電子文件管理辦法》,提請企業信息集成系統的編制人員在其系統的設計和運行過程中加入電子檔案文件的鑒定、歸檔、保存、利用等檔案管理內容。例如在計算機輔助設計過程中,要求計算機詳細記錄設計、加工過程中的原始資料及相應的更改信息,要在不同的版本上注明當前的有效資料,以確保最終歸檔使用的是正確版本的圖形或圖紙。企業檔案工作者要在專業人員的指導下學會運用專門的檔案信息接收管理平臺,要懂得如何控制和維護檔案信息資源的有效性、可靠性和實時性,掌握電子檔案信息的收集、管理。
此時企業檔案的保管也不再只以卷盒和柜架為裝具,更多的經過檔案人員鑒定歸檔的企業檔案信息將存入“虛擬庫房”。
為企業活動提供利用檔案信息亦發生了轉變。掌握一般的計算機操作只是對企業檔案工作者的初級要求。重要的是要在企業信息集成系統中及時掌握企業的產品信息及開發過程。一切以企業生產建設為中心,找準檔案工作為企業服務的切入點。做到把正確的信息,在正確的時間,以正確的方式,傳遞給正確的對象。要達到這樣高層次的檔案信息處理要求,檔案工作者絕不可是思想守舊、圖安逸、躲清靜者;檔案工作也絕不是僅靠幾種目錄、幾間庫房就可包容的。
二、電子商務活動中的檔案工作
1.1提高效率
我國總體用電量隨著居民生活水平的提高,呈現日益上升趨勢。根據近幾年的發電效率而言,發電量明顯無法滿足居民用電量,特別是夏天分時段的供電,嚴重影響了居民的正常生活。隨著家用電器的增加,居民用電量也日益攀升,電力廠相應的發電要求也隨之提高。傳統發電系統存在的問題,嚴重影響發電量和發電效益的提高,致使居民用電要求無法得到滿足。而電氣自動化技術在火力發電中的應用,有效提高了發電效率,解決了這一問題[2]。電氣自動化技術通過收集有用數據進行分析,制定出具體可行的實施方案,在運行時間的強度方面做好有效規劃,在滿足居民用電的同時,減少發電過程中產生的資源浪費。
1.2降低成本
煤和石油是傳統的發電材料,發電技術落后,很難完成發電強度的準確分析,對發電量的控制也存在問題,容易出現發電過多或不足現象。另外,由于人工操作的原因,也存在資源燃燒不充分所造成的浪費問題。而電氣自動化技術可以使用計算機軟件,準確算出資源充分燃燒所需的時間,大大提高資源的使用效率。在火力發電中使用電氣自動化技術,既能提高發電廠的發電效率,也能滿足居民在用電量方面的需求。在降低發電成本的同時,更好地實現了電量供應目標。
1.3優化配置
合理分配資源是火力發電過程中的重要內容,需要重點注意。發電廠內設備比較多,為達到供電要求,通常需要長時間的同時運轉。而發電設備作為機械,有一定的運作限度,運轉時間過長或進行超負荷運轉,都會影響設備的運作效率,嚴重情況下會損壞設備。而電氣自動化技術可以準確計算出設備所需運轉時間,在出現超負荷情況下可自動停止,待設備冷卻后再進行運轉。因此,發電設備在電氣自動化技術下可以進行輪流休養,設備的運轉效率得到提升,使用年限也得到有效保障。另外,電氣自動化技術可以對設備故障進行報警,及時提醒管理人員發現并解決問題。以往數據的輸入可以實現對設備的人工模擬操作,最大程度提高設備的使用效率。
2應用現狀
在設備保護方面的應用。電氣自動化技術在設備保護方面的應用包括聯鎖保護、裝置保護、繼電保護和防雷保護。電氣自動化技術在設備出現異常情況時,會及時關閉閘門,使故障設備停止生產運行,對設備進行有效的聯鎖保護。電氣自動化技術能夠協調搭配火力發電廠中的危機保安器、安全門等保護裝置,在排除外因干擾的前提下,完成電氣操作運行指令。繼電保護是通過連接計算機和繼電器,構建自動化的控制模式,實現繼電器在火力發電廠運行過程中的有效調控。電氣自動化技術對電力設備的保護控制,通過使用防雷器,減少雷擊對電機設備產生的干擾。在常規控制方面的應用。電氣自動化技術在常規控制方面的應用有集中控制、就地控制、自動控制和故障控制。在集中控制中,電氣自動化技術有效組合了發電機組、爐鍋和汽輪機,實現了控制操作的集中化,設備運行效率得到明顯提高。就地控制是針對規模相對比較小的火力發電廠采用的控制方式,通過連接重要設備及裝置,實現設備的整體運行[3]。自動控制即自動化的電能生產,在減少設備運行錯誤的同時,電能生產的難度也相應降低,電能產量與經濟效益也得到提高。在故障控制中,技術人員只需通過計算機監控運行設備,可以及時發現設備故障并解決。對于比較小的設備故障,系統可根據操作指令自動進行處理。
3系統配置
3.1I/O監控
I/O監控是一種集中監控方式,設備中電器的所有饋線都需要設置對應的I/O接口,通過電纜連接各個I/O通道,設備在進行A/D處理后進入DCS狀態,由此使整個發電工廠的設備處于DCS的監控之下。I/O監控在運行過程中,方便進行維護,問題發現和解決速度快,優勢明顯。相對比較低的監控防護等級,降低了DCS的造價,也有效降低了發電所需的成本。而I/O監控所涉及范圍包括所有電氣設備,工程量大且比較復雜。電氣設備的增加,無疑會加大監控范圍,致使監控運行壓力增加。監控范圍以及空間跨度的擴大,也相應增加了電纜的距離,DCS的可靠性受到一定程度的干擾。
3.2遠程智能I/O控制
遠程智能I/O控制,作為一種監控技術,在生產中的應用領域比較廣泛。遠程智能I/O控制的采用,相對減少了人力資源的使用,操作人員可在遠程接觸中實現對電氣設備的智能控制,有效緩解了操作人員的工作壓力,降低了工作強度。火力發電過程中,I/O信號通過電纜連接加采集柜,利用光纖或者雙絞線實現加采集柜與DCS控制器的連接,從而進行數據傳輸。遠程智能I/O控制不需要操作人員進行近距離接觸,在電纜鋪設方面節省了部分安裝費用。另外,I/O控制可以自動對所收集數據進行檢查、處理和校正。而在電量變送器、卡件和模擬量卡件方面,I/O控制也無法減少。
3.3總線控制
總線控制技術在電氣設備上的應用,通常需要利用3G技術來實現,通信技術、計算機技術和控制技術三者的配合和促進,是信息技術和網絡技術在設備控制領域有效發展的重要基礎。總線控制技術通過避開DCS控制站中的輸入、輸出單元,改變了傳統DCS控制中的集中和分散相結合控制體系。傳統集散結合的控制模式,在部分電氣設備的管理上是統一進行的,缺乏針對性和及時性。而總線控制技術,有效解決了這一問題,對電氣設備進行高度的分散管理和分散控制。
4創新手段
4.1單元爐機組的統一
電氣自動化技術在火力發電應用中的創新,需要實現發電廠電、機、爐的一體化,形成單元制的監控運行方式。火力發電廠中的DCS控制可通過這種監控方式,分析和總結火電機組整體的運行參數以及狀態信息,發掘火電機組的最大潛力,其自身獨具的控制功能在得到發揮的同時,也在一定程度上縮小了控制范圍,對監控系統進行了相應的簡化,有效降低了造價成本[4]。另外,在采集火力發電中有關電廠信息管理系統的信息方面,統一單元爐機組有重要的促進作用,實現了火電電網運行管理的統一和加強,中調AGC的相關要求和指令也逐一完成,電網工作效率提高,整個運行處于最佳、最經濟狀態。單元爐機組的統一,有效提高了火電機組的自動化水平,其監控水平也得到相應提升。
4.2控制保護手段的創新
在傳統火力發電中,系統控制方式是報警,聯鎖是其采用的保護手段,而這種控制保護手段,僅僅適用于帶有波動性的超限報警和聯鎖跳機。電氣自動化技術的創新應用,通過計算機技術實現控制和保護目的,在檢測電氣自動化系統運營、診斷出現故障的過程中,火電設備系統的隱患能夠提前被發現,控制保護策略也可以及時進行改善,如主動性的控制和保護措施的采用,可以自動調整系統故障的控制范圍,實現有效的防范,從而保證電氣自動化系統的正常運轉。此外,控制保護手段的創新,也使電氣自動化系統在設備維護上處于主動防患狀態,設備出現的故障能夠及時發現和處理。
4.3電氣的全通信控制
就目前情況來看,電氣自動化系統在火力發電中的應用,還無法達到DCS控制系統的要求,在DCS控制系統基礎上實現的電氣全通信控制方式也無法得到滿足。通信的速度以及系統的可靠性都需要有一定的提升,而DCS控制系統與電氣自動化系統之間所存留的部分硬接線,也是需要解決的問題[5]。電氣全通信控制模式的形成,需要解決好熱工工藝連鎖方面的問題,在實際應用上提高電氣后臺系統的水平,對于初期階段的基礎運轉監控功能,還需要不斷豐富,在實際操作過程中,提高電氣自動化系統控制的邏輯性,在控制水平、運行管理水平以及自動化水平方面不斷提升。
4.4通用網絡結構的構建
在電氣自動化系統成功生產運營過程中,通用網絡結構的構建有重要的推動作用。電氣自動化技術在火力發電中的創新應用,需要選擇合適的網絡通訊產品,能夠在擴展自動化辦公環境的基礎上,實現元件甚至電氣自動化系統整體范圍內的使用,以電廠管理層為基礎,發揮對現場設備的監控功能,保證計算機控制系統、管理系統以及控制設備之間信息傳輸的暢通性,實現整體集中運行的自動化。
5結語
在新型的電力自動化系統中,多了一部分以往所沒有的結構——應用服務器,處于三者正中間的位置。處于中間件的應用服務器在這一結構中,在對前置機的數據進行接納的同時自動備份,歷史數據的存在為數據訪問中邏輯規則的實現開辟了路徑而電力工作站的功能借助邏輯規則以及數據庫得以實現。同時不能忽視的是DCOM是實現應用服務器和電力工作站通訊功能的基底,ADO則是應用服務器和數據庫服務器實現通訊的依據。在這一模型的基礎上,還有兩個很大的優勢。第一個就是使得軟件自身的可擴充性得到了進一步的增加和推動,假如數據發生了相關的邏輯規則的變化,不需要改動其他,只需要將對應的中間件(應用服務器)就可以了,這個時候對于電力前端也不必擔心,影響是微小的。第二個優勢則是在安全性能上的保障,因為前后客戶端沒有直接的數據往來,而是通過應用服務器進行,這樣以來便使得一些不安全因素得以避免。
2計算機技術在電力系統中的實現
2.1系統的應用服務器
在上文中所提及到的三層C/S結構,所添加的中間件的部位是最為重要的部分。這里將對中間件進行一個較為詳盡的解釋。這一部位具有強大的通信功能,同時自身的可擴展性可以得到極高的展現。由此使得客戶機與服務器之間、服務器相互之間的數據傳輸穩定進行,實現兩者群體之間的通信進行。結合在上文中所提到的功能的實現問題,可以知道,應用程序服務器在發揮本身程序功能的同時,又承擔著DCOM服務器的角色。
2.2實時數據的獲取和保存
應用程序服務器是承接實時數據的紐帶。說到實時數據這里就要有所區分,實時數據是分為未處理的和已處理的兩個部分,前者是存在于前置機中,后者則是具體的計算之后呈現的。這里需要提及到的是WinSock編程。當操作電力自動化時,內部存在一個存盤線程,位于后臺部位,只要不是有系統出現暫停或者是退出的問題,就會一直運行。
2.3系統的應用邏輯
在文中我們所采用的三層C/S結構,應用邏輯是需要被定義在應用服務器端的,這樣就可以達到所有用戶共享這一資源的目的,假設遇到事物邏輯變化,則只需對服務器中的應用邏輯進行一定的更改即可。這樣就使得客戶端在運行和使用過程中減少了很多不必要的問題。
3計算機技術應用于電力系統自動化的價值和意義
當今社會的發展速度加快,對于電力的性能要求也進一步提高。將計算機技術應用與電力系統自動化的過程中,可以有效提升相關電力部門的管理水平和工作效率,自動化和智能化的優勢得到很好的展現。另一方面則是在安全性方面更加有保障,由于計算機技術本身的自動化優勢,可以將許多風險性事件的危險度降到最低,電力系統在自動化加強的同時,對電力使用的安全性能方面也有顯著加強,使得安全性有效提高。計算機技術于電力系統自動化的應用過程中產生了極大的積極效益,促進了社會整體的進步與發展。
4結語
關鍵詞:電力企業;電氣工程;自動化技術;對策;研究
目前,電力工程自動化技術是電力企業管理工作的重中之重,占據著極其重要的行業地位,已經得到了電力企業內部的高度重視與關注。電力工程自動化技術在電氣工程中的應用不斷深入,可以滿足于人們在生活中對于電能的需求,推動電力工程技術的迅速轉型與優化升級,進而確保電力工程自動化技術的高質量、高水平。
1電力工程自動化技術的構成內容分析
1.1變電站自動化變電站自動化可以穩步提升變電站運行的穩定性與可靠性,促進人力資源的優化利用與配置。其中,電磁式設備是變電站安全運作的重要核心構件,但是要想始終保持設備的高效運作,就必須要定期展開維修與更換工作,以免造成變電站安全事故的發生。而變電站自動化,實現了微機設備的順利過渡,在屏幕上就可以完成相應的操作和記錄工作,而且大大提升了變電站的運作效率,避免了人工操作的失誤。1.2電網調度自動化。電網調度旨在不斷提高用電效率,降低電力不必要的損耗和浪費,進一步統籌規劃電力配送,進而更好地為各個地區的電力工程服務。電網調度的順利實施主要得益于局域網的良好配合,如果局域網出現一系列問題,就會嚴重阻礙著調度管理的強化。而網絡信息技術的應用,卻大大改造了以往固有的局域網絡,使電網調度網絡更加系統嚴密,對于電力利用效率的提升具有著極大的促進作用。同時,電網調度自動化可以有效收集、整理和分析相關的數據信息,為管理員的宏觀調控提供切實可行的參照依據,還可以對電力負荷加以控制與調整。1.3發電廠測控自動化。分散測控系統在發電廠測控上得到了較為廣泛地應用,關鍵部分的智能模件和主控模件可以及時掌握控制設備的運行狀況,是實現發電廠測控自動化目標的重要保障。通過屏幕化的操作方式,降低了工作人員通過遠程操作相應設備,進而大大提升電氣工程的運作效率,是人工控制的一大進步,使電廠測控自動化更加安全穩定地運作。
2電力工程自動化技術在電力工程中的應用闡述
2.1現場總線技術的應用。在電力工現場,將各種自動化裝置和一些測量儀表連接在一起,形成統一數字化的信息網絡系統。通過網絡自動化控制,加快了數字通信、自動化控制以及計算機系統的有機融合,進而形成現場總線技術。現場總線技術的應用范圍比較廣泛,比如在收集變送器控制的總用電量中,可以將信號在主計算機系統中進行集中與統一,隨即通過數學模型進行深入的分析,根據科學完善的指令進行下達,進而充分實現電力工程的自動化控制目標。現場總線技術的應用原理就在于將電力工程的各項控制功能分散開來,通過自身對應的計算機來進行信息的處理工作,再將信息傳遞到總計算機系統中。現場總線技術的應用,是電力系統多樣化需求的重要表現形式,促進資源信息的實時共享,朝著自動化控制的方向發展。2.2功率半導體器件的應用。在電力系統,固態變壓器可以有效對電力實施管控,從屬于半導體器件。而直流輸電和柔流輸電等在功率半導體器件的應用越來越廣泛。在固態變壓器中,聯動性能比較強、重量比較輕,是電力系統重要的核心構建之一,功能主要是通過高頻變壓器和電力電子變流器來實現的。同時,柔流輸電可以有效提升大容量電能地高效運轉與變換,直流輸電主要得益于晶體管的應用。由此可見,功率半導體器件是確保電力工程自動化發展的重要保證。2.3光互聯技術的應用。電力工程自動化控制系統中,光互聯的應用程度在不斷地加深。主要表現如下。2.3.1探測器功率的控制。光互聯技術可以將探測器功率的輸出數量控制在合理的范圍之中,降低了電力生產工作中的電容性負載和約束程度,不斷實現電力系統集成度目標。2.3.2進一步強化了系統的變通性。通過相關的實踐操作可以看出,電子傳輸和電子交換技術拓展了電力系統中互聯網的應用渠道,并且優化整合了互聯網編程結構,進而充分增強了電力工程總電力系統功能的變通性。2.3.3為數據傳輸提供了一定的便利性條件。對于光互聯技術的應用來說,可以免受電磁的強度干擾,抗干擾性比較明顯,進而增強了數據傳輸工作的快速性與便捷性,已經成為了電氣工程應用中必不可少的應用部分。
3完善電力工程自動化技術的解決對策
3.1選擇合理的自動化技術的應用范圍。3.1.1電網調度自動化技術。電網調度自動化技術必須要借助于計算機調度系統,是信息技術與控制技術相結合的重要體現,可以進行有效地信息采集與整理工作,為電網的安全運行提供強有力的保障。同時,必須要對電力工程實施全方位、多角度領域地監控,以免在突況發生時猝不及防。3.1.2變電站自動化技術所謂變電站自動化技術就是指將通信技術和計算機技術的結合,可以對數據實施集中化的處理與利用,強化變電站系統的監督與控制。變電站的信息處理可以充分優化電力系統,進而為信息的收集與整理工作奠定堅實的基礎。3.1.3配電網自動化技術。主要應用于城鄉配電的建設之中,是我國電網發展的延伸與拓展。3.2實現功能分層主站和子站等是配網自動化系統的重要組成部分,其內在功能的實現主要得益于自身通信系統。其中,電子線載波是通信方式中應用比較廣泛的一種,但是由于配電網的節點設置較多。很難滿足于電力工程自動化的建設需求,進而不建議使用阻波器的使用。第二代載波。技術大大基于了擴頻原理,可以有效降低低信噪聲,具有較強的通信能力;最新研制的載波技術主要得益于DPS的配合與協,實時解碼功能比較強大,通信發展前景較為廣闊。3.3確保良好高效的電能質量根據各個大功率電力設備的大力應用,對電能質量的要求也越來越嚴格,電力部門必須要積極參與到電能質量的建設工作中來,以更好地適應電力系統設備的發展需求,已經成為了電力系統的研究重點。目前,數字信號處理器的應用實現了數字信號處理技術質的飛躍,具有較高的應用價值。數字信號處理器可以有效控制電力工程的相關程序;增強電力系統的安全性與穩定性,不會使電力系統受到過多溫度的影響,降低了調試難度,可以進行大批量的生產。因此,數字信號處理器的應用,可以做到不斷完善電力工程自動化技術。3.4主站一體化。電力系統的不斷完善,人們對于供電也提出了明確的要求和期望。然而,電力企業是一個有機協調地統一整體,企業內部部門或者崗位的獨立性比較明顯,增加了信息層面上的實時與共享。因此,在電力工程自動化技術的應用之下,要將相對獨立的單一、獨立部門形成綜合性強且一體化程度高的信息一體化系統,將地理信息系統、變電站綜合自動化、配電管理系統以及通信系統充分結合在一起,進而構建一體化的信息系統平臺。3.5強化后期維修與養護。電力自動化系統中的后期維護工作至關重要和關鍵,在電力自動化設備進行安裝之后,相關電力人員需要進行后期驗收工作,將電力自動化的安全管理問題加以落實和強化。一些工作人員要在遵守國家相關規章制度下進行竣工驗收工作,予以強有力的制度性保障,確保電力自動化技術應用萬無一失。此外,對于電力工程的維護人員而言,要定期展開一系列的業務培訓與指導工作,不斷增強行業人員的專業素養與業務素養,充分熟悉和掌握電力設備的運行狀況。在后期竣工階段,維護人員要及時分析和解決電力系統的故障成因,采取相應的改善措施,避免對電力工程造成更大的影響。3.6加大以太網的應用力度。在電力工程自動化技術的發展中,必須要加大以太網技術的應用,增強數據信息的共享性,對可能出現的問題進行系統化的分析與研究,推動電力工程精細化目標的實現。根據以太網分布的信息化和開放化特點,不斷提升電力工程的自動化發展水平,進而完善電力工程的自動化技術。
4結語
綜上所述,完善電力工程自動化技術勢在必行,可以確保電力工程的順利實施與高效運轉,增強電力工程的經濟效益與社會效益。電氣工程自動化技術的建設是一項較為漫長的系統化建設工程,要增強對自動化技術的重視程度,推動電力工程朝著自動化、專業化的方向發展,加強電網調度、變電站以及配電網等自動化技術的應用程度;同時,電力工程的相關人員要提升自身的綜合素養,不斷與時俱進、開拓創新,將自動化技術提升至全新的廣度和深度,進而為電力工程的穩定發展提供更為廣闊的發展空間。
作者:蘭旭 單位:湖北銘遠至誠項目管理有限公司
參考文獻: