前言:一篇好文章的誕生,需要你不斷地搜集資料、整理思路,本站小編為你收集了豐富的人工智能時代的教育主題范文,僅供參考,歡迎閱讀并收藏。
先給大家重點推薦一本期刊:中國職業技術教育
中國職業技術教育雜志征稿信息
《中國職業技術教育》雜志是由中華人民共和國教育部主管,教育部職業技術教育中心研究所、中國職業技術教育學會和高等教育出版社共同主辦的一份綜合性中文期刊,集政策指導性、學術理論性和應用服務于一身,是教育部指導全國職業教育工作的重要輿論工具,是服務各級各類職業教育機構的主要陣地。
中國職業技術教育投稿欄目:主要有職教要聞、專稿專訪、綜合管理方略、課程教材、教研與教學、師資隊伍建設、研究與探討、職業指導、職業培訓、高等職業教育等欄目。
再給大家推薦職業教育范文:人工智能背景下職業教育變革及模式建構
董文娟1,黃堯2(1.天津大學教育學院,天津300350;2.北京師范大學國家職業教育研究院,北京100875)
摘要:順應人工智能時代的浪潮,基于新興技術的職業教育變革及新模式建構勢在必行。該文從職業教育智慧化、經濟發展、政策保障、信息化生態重構四個方面,剖析了人工智能時代職業教育變革的現實訴求,并進一步分析了當前職業教育外部環境及其自身發展的困境。人工智能背景下職業教育的變革體現出融合、創新、跨界、終身化的新特征。基于此,從課程、教學、學習、環境、教師發展、評價、教育管理及組織等方面,探究職業教育的變革路徑及模式建構。最后探討了職業教育模式變革還面臨回歸教育本質、規避技術弊端等挑戰,并提出“適應—引領人工智能”的發展目標。
關鍵詞:人工智能;職業教育變革;模式建構;智慧化
“人工智能的迅速發展將深刻改變人類社會生活、改變世界。特別是在移動互聯網、超級計算等新理論、新技術及經濟社會發展強烈需求的共同驅動下,人工智能發展呈現出深度學習、跨界融合、人機協同、群智開放、自主操控等新特征?!盵1]人工智能作為新一輪產業變革的核心驅動力,為我國供給側結構性改革下的“新常態”經濟發展注入新動能,使人們的思維模式和生活方式發生了深刻變革。近年來,國家高度重視與社會經濟發展聯系最為密切的職業教育,積極推進職業教育信息化,運用人工智能改革教學方法和人才培養模式,構建新型智能職教體系,提升信息技術引領職業教育創新發展的能力。
一、人工智能背景下職業教育變革的現實訴求
人工智能對傳統教育理念產生了革命性沖擊,職業教育結構不斷調整,勞動力素質與市場需求的矛盾、學習方式與自我價值實現的矛盾等促使職業教育向智慧化、智能化發展。目前,我國處于教育信息化2.0、工業4.0的新時期,全球范圍內新一輪的科技革命和產業變革正在加速進行?!耙粠б宦贰薄爸袊圃?025”人工智能等重大國家戰略的提出,及以新技術、新產業為特征的新興經濟模式要求教育領域,尤其是職業教育培養行業、產業急需的技術技能型、智慧型人才,具備更高的創新創業能力和跨界整合能力,促進智慧化發展,助力經濟轉型升級。
(一)職業教育智慧化訴求:職業教育信息化發展的必然選擇
“智慧教育是以物聯網,大數據等信息技術為依托,創造智慧教學環境,轉換教育方法,內容與手段,注重教育網絡化,個性化和智能化的一種教育新模式?!盵2]智慧教育作為“一種由學校、區域或國家提供的高學習體驗、高內容適配性和高教學效率的教育行為(系統)”,被視為教育信息化發展的高端形態[3]。因此,職業教育的智慧化并非簡單的數字化,強調信息技術推動職業教育教學模式和方法的變革,改變思維模式,創建價值等方面共享的學習共同體,培養創新型、智慧型人才。
職業教育智慧化是職業教育信息化發展的必然選擇。目前,我國的職業教育信息化水平正在穩步提高,投入持續增加,各種智能信息技術應用于教育教學、實習實訓、測量評價等領域,并逐步成熟,正在努力打造一個信息化、智慧化的現代職業教育生態系統。新時期我國很多地區及職業院校積極提升現有信息化系統的智慧化水平,積極創建智慧校園、智慧社區等,逐步實現了組織管理的智慧化、資源環境的智慧化和服務評價的智慧化。
(二)經濟發展訴求:人工智能時代的新興經濟需要高技能智慧型人才
人工智能時代職業教育運用移動互聯網、大數據等新興技術,與經濟及其他部門跨界融合,不斷創造新產品、新業務,推動職業教育模式創新,形成了以互聯網為基礎設施、人工智能為實現手段的經濟發展新常態。人工智能時代是以現代科學技術為支撐的新時代,各行各業的運作發展和對知識技術的掌握要求達到了更高層面,相應的教育需求也有所提升,市場環境渴求勇于創新、個性化的高技能智慧型人才。職業教育要應對行業上升發展的勞動力需求問題,基于人工智能應用,提高技能培養層級,以適應新的社會勞務需求?,F代企業生產依托互聯網科技,與智能化設備直接聯接,通過數據分析和應用,促進科技成果轉化為生產力。勞動密集型企業已不適應現代行業、產業發展,需升級為網絡智能型,與此同時,職業院校的課程模式、專業設置、實習實訓、師資結構等也做出相應的調整和革新,既促進了職業教育的智慧化、智能化,又推動了產業升級和工業變革。
(三)政策保障:國家從宏觀層面保障人工智能時代的職業教育發展
2016年是我國人工智能元年,2017年我國頒布了《新一代人工智能發展規劃》,提出了“將發展人工智能放在國家戰略層面進行系統謀劃和布局”,這預示著我國人工智能時代的全面到來,為我國職業教育的發展提供了良好的宏觀政策環境。人工智能給職業教育帶來了符合時代精神的新內容,積極融合信息技術,整合職業教育資源,提升公共服務水平,影響和改變了原有的教育生態。緊密依托信息共享平臺,突破時空限制,讓學習者自我選擇,更加人性化和智能化。我國很多職業院校已經開啟了智慧校園的行動計劃,一些大中城市也在積極制定實施智慧城市的發展規劃,在良好的政策保障中提升智慧化水平。
(四)信息化生態重構訴求:人工智能時代的職業教育變革是對職業教育信息化生態系統的重構
“依據《2006-2020年國家信息化發展戰略》,我國正在有序推進數字教育向智慧教育的躍遷升級和創新發展。”[4]在新興智能信息技術的催促下,技術變革帶來了職業教育系統的顛覆性創新改革,打破現有的條條框框,改革傳統教育模式,再造教育業務新流程。在職業教育領域創新應用物聯網、大數據、人工智能等先進技術,提升各科各門教育教學業務,打造各級各類智能實訓部門、培訓機構,覆蓋貫通中高職院校,整合系統內外現有資源,推進智慧教育生態有序發展,為各類用戶提供最適合、最智能的職業教育資源和服務,完成對職業教育信息化生態系統的重構。
二、當前職業教育發展的現實困境
人工智能對各行各業的影響具有革命性和顛覆性,可能帶來新的發展機遇,也可能帶來不確定性的挑戰,比如可能會改變就業結構、影響政府管理、威脅經濟安全等,還可能會沖擊法律與社會倫理,影響社會穩定乃至全球治理。當前,人工智能與“大眾創業、萬眾創新”浪潮席卷而來,職業院校既是人工智能應用的戰場,又是培養技術創新型人才的“夢工廠”[5]。人工智能時代的職業教育信息化發展迅速,影響是廣而深的,對職業教育外部環境及其本身都造成了極大的沖擊。
(一)職業教育外部環境發展困境
“據聯合國教科文組織預測,到2020年,人工智能將替代20億個工作崗位”[6],那些技術含量低、重復性強的技能將被智能機器、數碼設備所替代,工業機器人也將大面積應用。智能設備替代行業勞動力,能夠降低勞動成本,且具有高效、易操作等競爭優勢。傳統職業教育培養模式很難適應未來行業、產業的發展需求,人工智能沖擊職業教育就業崗位,撼動其所依附的崗位基礎,對職業教育的生存與定位產生了威脅。因此,根據智能時代職業教育的崗位特征與需求,提升職業人才的知識結構和專業技能,是新形勢下職業教育的發展方向。
(二)職業教育自身發展困境
近年來,人工智能在職業教育領域內的應用和提高是目前職業教育的發展趨勢。我國重視職業教育信息化、智能化發展,各級各類職業院校在信息化基礎設施建設、校園信息化管理等方面都有了顯著提升,但信息技術與職業教育的深度融合仍不夠緊密,表現出信息化管理效率低、科學決策水平低等現象。人工智能背景下職業教育自身發展的困境表現在:
1.課程與教學困境
職業院校新課程改革提倡構建智慧課堂,制定個性化學習計劃,注重課堂實施效果。但目前的實際課程教學仍是以教師為中心,強調知識的灌輸,重視統一性和計劃性,與教育改革提倡的個性化教學相去甚遠。教學方法、教學理念更新慢,很難激發學生的內在學習動力,創新性思維弱,使得個性化教育的無法實現。近年來,中央、省、市、縣四級教育平臺逐步建立起來,課程與教學的層級設計逐步完善,但在實施的過程中,各級平臺之間存在溝通不暢等問題,各級資源內容不系統,不銜接,導致無序疊加和資源的重復浪費,“精品課程”等項目豐富了課程資源,但質量不高。在線課程與教學以傳統的科目、章節為單元,構建系統性的在線教育內容,為用戶提供專業化的知識選擇,但由于受時間條件等限制,大多數受教育者習慣于碎片化學習,連貫性和整體性差,缺乏對課程與教學體系的系統性學習。
2.認知困境
隨著人工智能時代的到來,許多職業院校將“未來教室”“智慧課堂”定位為未來發展方向,進行了多種嘗試和改革,如MOOC混合教學、翻轉課堂、多屏教學等,但“管理者和施教者對智慧教育的理解多停留在‘智慧課堂=多媒體+傳統教學的層面’,教學觀念和思維依然固化,并沒有因為新技術的參與而得到實質改變”[7],缺乏對多媒體網絡架構和智能學習平臺的深層認識,更缺乏對管理評價和互動交流等模塊的理解與掌握,雖投入大量人力財力采購了數量巨大、設備精良的多媒體設備和智能服務設備,但沒有充分有效使用,大大限制了智慧教育的發展潛力。
3.用戶困境
傳統教學以群體教育為基本單元,教師和學習者作為學習共同體,在管理、學習的互動過程中形成強大的群體約束力,促進雙方共同進步。在信息化教育時代,學習者自由掌握學習時間和進度,遇到問題可能無法及時解決并獲得反饋,無法進行面對面交流,因此,基于人工智能網絡化學習平臺,學習者需要高自控力、高學習能力才能適應這種全新的學習方式。
4.評價困境
傳統的評價方式多依靠經驗和觀察,智慧型評價則是基于學習過程的一種發展性評價,以采集到的學習數據為客觀基礎。在人工智能、數字信息化環境下教育效果的評價實際要受到很多因素的影響和局限,在信息技術與職業教育融合的過程之中,許多智能技術應用于教育教學實踐,難以進行定性定量的智慧評價,如互動交流及深層次的學習評價等。
三、人工智能背景下職業教育變革的新特征
人工智能帶來了思維模式的創新,改變了人們認識問題、思考和解決問題的方式,越來越多地依賴人與智能網絡的協同創新。人工智能背景下的職業教育變革圍繞經濟社會發展大局,“主動服務國家重大發展戰略,加大虛擬現實、云計算等新技術應用,體現校企合作、知行合一等職教特色,以應用促融合、以融合促創新、以創新促發展。”[8]人工智能背景下職業教育的變革必將加速推進職業教育的現代化、智能化進程,表現出了融合、創新、跨界和終身化的新特征。
(一)融合
人工智能技術科學應用于當前職業教育,在最短的時間內整合、重組大量的知識信息,形成科學的技術技能知識體系,為職業教育資源、企業資源、產業資源、社會資源等一切有可能聯結的資源融合提供了可能。為促進職業教育的智慧化發展,在現有的合作模式、集團模式、產教融合模式等實體協作發展的基礎上,建立智能互動的智慧教育供給平臺、常態化智慧課堂和大數據化智慧教育生態系統,為我國新興經濟發展提供高技能、智慧型人才支撐。
(二)創新
信息化時代下“變”為創新立足之要點。創新時代最需要提升的就是創造智慧。“由知識的理解記憶,轉向知識的遷移、應用并最終指向創造發明”[9],以提高學習者的學習能力和應用能力,提升其創新思維和智慧思維,不斷開拓人類社會發展的高度和寬度。智能化、信息化的時代是創新不斷的時代,是原有知識不斷被更新、技術不斷被升級的時代。人工智能促使社會化協同大規模發展,促進職業教育體系核心要素的重組與重構,創新生產關系,呈現出新的協作架構,開創了新的教育供給方式,增加了教育的選擇性,推動了教育的民主化。學習者能夠按照自己的價值觀、興趣與愛好等選擇適合自己個性發展的學習方式和學習內容,促進學習者個性化、多樣化發展,最終實現教育公平。
(三)跨界
智能科學與職業教育連接起來,搭建起兩者溝通的橋梁,跨越了人工智能虛擬教育和線下實體教育的界限,實現了兩者之間的融合。教育供給由競爭資源轉變為協同合作,直線型的中心組織管理轉向去中心化、泛化管理。通過大數據智能技術平臺、遠程教育平臺等對職業教育資源進行整合共享,跨越教育邊界,與市場、行業、企業以及職業教育培訓機構對接,提供更加便捷的智慧化服務。
(四)終身化
人工智能時代職業教育的變革堅持“以人為本”的教育理念,滿足學習者在任意時間、任意地點、以任意方式、任意步調終身學習的需求[10]。打破了地域和時間的限制,體現了教育的泛在化、個性化和終身化,與終身教育理念的發展目標不謀而合。人工智能時代社會經濟發展加快,人們追求高層次自我價值的實現,充分體現出終身學習的必要性和緊迫性。目前,我國正在積極創建泛在學習環境,致力于構建終身化學習型社會,努力創造有利條件向全民提供終身教育與學習的機會。
四、人工智能背景下職業教育發展的模式建構
人工智能背景下職業教育的變革預示著全新思維意識形態、社會發展形態的變革,重塑職業教育可持續發展的新思維,重構信息時代職業教育的價值鏈和生態系統。智能化技術科學將現代職業教育內部各要素,以及內部要素與外部環境之間,通過虛擬技術和智能化手段互聯貫通,突破傳統教育價值的鏈狀模式,使職業教育由傳統模式走向“人工智能+職業教育”模式的建構。人工智能對職業教育課程、教學、評價、管理、教師發展等方面產生系統性影響,為職業教育提高教育質量和提升服務水平提供了技術支持和現實路徑,解決不能兼顧職業教育規模和質量的矛盾問題。下面將從課程、教學、學習、環境、教師發展、評價、教育管理及組織等方面來探究職業教育的變革路徑及模式建構。
(一)人工智能背景下職業教育的課程模式
人工智能時代的信息知識、科學技術正在以前所未有的速度增長、更新和迭代,呈現出了碎片化、多元化、創新性、社會性的特征。人工智能背景下職業教育的課程模式是為學習者提供按需可隨時選擇的知識儲備智能模式,解決了傳統職業院校課程教學的滯后性,呈現的是現代職業教育的前沿信息和內容。課程革命愈演愈烈,靈活多樣的微課、慕課等形式層出不窮,在線課程將成為常態,信息傳播媒介、知識獲取方式等都發生了巨大改變,課程內容和結構的表現形態、呈現方式、實施及評價等也都進行了相應變革。智能化信息科學技術為課程的設計、架構、實施提供了快捷和便利,為學習者的個性化、終身化選擇提供了多種渠道。人工智能背景下職業教育的課程模式的建構表現為:首先,線上線下融合的大規模開放課程融入現代職業教育,課程的表現形態和實施途徑呈現出智能化、數字化、立體化的特征,成為學校常態課程的有機組成部分,為學習者提供了更多的可選擇機會,使實施個性化課程成為可能?,F代職業教育的課程內容強調學術性與生活性相互融合與轉化,融入社會資源,立足于我國社會經濟的新常態和學習者的全面發展,實現社會化協同發展,共贏共創;其次,課程實施的空間得以拓展,跨越了社會組織邊界、職業院校邊界,將從班級、年級、全校擴展到網絡社區以及更大的空間。課程的整體結構從分散走向整合,以技術為媒介,形成跨學科、多學科整合的課程;最后,課程內容的組織、課程的實施逐步模塊化、碎片化、移動化與泛在化,社會化分工更加精細,教師也將承擔教學設計、技術開發、在線輔導等不同的角色。
(二)人工智能背景下職業教育的教學模式
人工智能時代將信息技術有效地融合于職業教育各學科的教學過程,從知識的傳遞轉變為認知的建構,從注重講授和內容,轉變成重視學習過程[11],構建“以教師為主導,以學生為主體”的以數字化、智能化為特征的智慧教學模式,重視學生的主體地位,引導學生“自主、探究、合作”。人工智能背景下職業教育的教學模式的建構表現為:首先,人們的學習方法、認知方式和思維模式已經發生了巨大的轉變。信息化教學使得信息技術已成為學習者認知的必要工具,認知方式也由“從技術中學”轉型為“用技術學”。其次,信息化教學的重點從“面向內容設計”轉變到“面向學習過程設計”,更加重視學習者發現問題、分析和解決問題能力的培養,關注學習者的學習過程,以及其獲得學習活動的體驗。同時,信息化教學要將課堂內的學習知識和課堂外的實踐活動聯結互動,按照學習者的個性化需求和認知方式自主選擇學習內容。第三,智慧教學將成為課堂教學的新重點。日常教學工作形態不再是點線面的連接,而是呈現為智能化、立體化的教學空間,智慧課堂將會促進學習者的深度學習、交互學習和融合學習,智能備課、批閱以及個性化指導等也將成為教育者新的教學工作形式。從機械評價學習結果轉變成適應性評價學習結果。第四,在線教學、整合技術的學科教學法將成為新的教學形態,促進教育均衡發展,實現跨學校、跨區域的流轉。移動學習、遠程協作等信息化教學模式,能夠實現教師的“教”與學生的“學”的全面實時互動,最大限度地調動學習者的主觀能動性,提升教學質量與人才培養質量。
(三)人工智能背景下職業教育的學習模式
智能系統和互聯網絡為學習者提供了豐富多元的學習資源和環境,推進了教育教學活動與學習環境的融合發展,人工智能背景下職業教育的學習模式也逐步建立起來,具體表現為:首先,智能時代的互聯網絡全面覆蓋每一個人、每一個角落,活動空間由課堂內拓展到課堂外,學習與非正式學習正在互相補充、互相與融合,導致學習者的學習行為變化、學習方式的革新。其次,基于互聯網出現了一批創新的學習方式,借助情景感知技術及智慧信息技術,進行真實過程體驗的情境學習,促進學習者知識遷移運用的情境化和社會化。第三,借助互聯網云技術和各種應用工具,學習者可根據自身學習需求,選擇最優學習方式,也可利用數據分析技術,追蹤記錄學習路徑和學習交互過程,隨時隨地獲取個性化教學服務和量身定制的學習資源,拓寬了智慧教育視野。第四,各職業院校開始拓展校園智慧學習的時間和空間,以實現虛擬和現實相互結合的智慧校園育人環境。推進網絡學習空間建設,加強教與學全過程的數據采集和分析,“引導各地各職業院校開發基于工作過程的虛擬仿真實訓資源和個性化自主學習系統”[12],強化優質資源在學習環境中的實際應用。
(四)人工智能背景下職業教育的環境模式
智慧教育環境是以大數據、多媒體、云計算等智能信息技術為基礎而構建的虛實融合、智能適應的均衡化生態系統。信息技術與職業教育的深度融合,為師生的全面發展提供了智慧化的成長環境,如智慧云平臺、智慧校園。人工智能背景下職業教育的環境模式的建構表現為:首先,智慧教育環境將信息技術與職業教育服務結合、面對面教學和在線學習結合,形成數字化的、虛實結合的職業教育智能服務新模式。其次,智慧教育環境將促進各種智能化、數字化信息技術融入職業院校的各個業務范圍和業務領域,與系統內的其他業務橫向互聯、縱向貫通,且信息能夠適時生成和采集,全過程實現數字化與互聯化。第三,智慧教育環境能夠感知學習者所處的學習情境,理解學習者的行為與意圖,滿足學習者的個性化需求,提供多元化的適應服務和智能感知的信息服務。互聯網應用基于智能數據分析,實現智能調節與自動監控,為學習者提供定制式的學習服務和個性化的學習環境。未來教室必將變成“虛擬+現實”的智慧課堂,在網絡空間中參與線上課程、線下活動,實現線上線下互動交流。同時,智慧校園的創建和管理,能夠對每個班級、學區進行動態管理,構建出一個以問題、任務為線索,學生實現自主學習的知識體系和促進師生互動、生生互動的智慧管理平臺。到2020年,“90%以上的職業院校建成不低于《職業院校數字校園建設規范》要求的數字校園,各地普遍建立推進職業教育信息化持續健康發展的政策機制”[13],以學習者為中心的自主、泛在學習普遍開展,精準的智能服務能夠滿足職業教育的終身化定制。
(五)人工智能背景下職業教育的教師發展模式
人工智能背景下職業教育的變革對教師的專業發展、素質能力提出了新要求,改變了教師的能力結構和工作狀態。教育信息化大背景下,互聯網技術、多媒體手段的產生、智能化設備的使用極大提高了教師的專業發展和能力素養,以適應新課程改革與教育信息化的要求。人工智能背景下職業教育的教師發展模式的建構表現為:首先,新時代教師專業發展的內在要求和外在環境都要求教師能夠認識、了解和應用互聯網新技術工具,促使教師專業發展能力和素養的提升和豐富。其次,教師的專業發展要面向實際、情境化、網絡化的教學問題,教師需要在多變的教育情境中綜合運用核心教學技能,將信息技術知識、學科內容知識、教學法知識很好地融合并遷移運用。新時代的教師要學會掌握使用智能化設備和數字化網絡資源,積極加強與其他專家、教師的合作,或遠程工作,形成基于智慧教育技術的多元化的學習共同體。教師的工作狀態由個體的單獨工作轉變為群體的共同協作,大大提升了教師的工作效率。第三,信息化背景下教師的教學理念要發生轉變,由促進學生“接受學習”轉變為“主動建構”,由“被動適應”轉變為“主動參與”,越來越強調以學生為中心的過程體驗,從了解信息技術轉變為掌握智慧教育技術,保持學科知識,教學方法,核心技術的動態平衡,促進學生智慧學習的發生。第四,信息化教師要學會使用智能化教育技術,積極開發數字化學習資源,創設豐富多元的教學活動,鼓勵學生掌握智能信息工具,學會探究和解決問題,發展提升學生的創新思維能力和信息化學習能力。教師的信息化教學能力和素養全面提升,信息技術應用能力實現常態化。
(六)人工智能背景下職業教育的評價模式
現代教育價值趨于多元,以互聯網為基礎的智能化信息技術使教育評價在評價依據、評價內容、評價主體等多個方面實現了全面轉變。人工智能背景下職業教育的評價模式的建構表現為:首先,互聯網信息技術應用于學習過程使得伴隨式評價成為可能,更加關注學習者的個體差異和特點。強調過程評價和多元共同評價,更加客觀全面,重視評價過程的診斷與改進功能,以促進學習者的個性化發展。其次,互聯網、大數據、智能云技術的出現使得評價的技術和手段多樣化、智能化,節省人力物力財力,提高了評價的科學性、針對性。第三,以大數據為基礎的適應性評價因人而異,可獲得及時反饋,可真實地測評學習者的認知結構、能力傾向和個性特征等,從知識領域擴展到技能領域、情感、態度與價值觀,構建以學習者核心素養為導向的教育測量與評價體系,促進學習者發展。
(七)人工智能背景下職業教育的管理模式
智能化信息技術、云計算技術、大數據技術等能夠促進大規模社會化協同,拓展教育資源與服務的共享性,提高教育管理、決策與評價的智慧性,因此,基于互聯網的教育管理必將逐步走向“智慧管理”模式。人工智能背景下職業教育的管理模式的建構表現為:首先,互聯網將家庭、學校、社區等緊密、方便地聯系在一起,拓寬了家長和社會機構參與學校管理的渠道,各利益相關者可共同參與現代職業院校的學校管理,協作育人。其次,新時代的職業院校管理模式通過可視化界面進行智能化管理,業務數據幾乎全部數字化,能有效降低信息管理系統的技術門檻,使管理工作更加輕松、高效。通過深度的數據挖掘與分析,能夠實現個性化、精準資源信息的智能推薦和服務,為管理人員和決策者提供及時、全面、精準的數據支持,以提高決策的科學性。第三,通過互聯網信息技術可以實現全方位、隨時的遠程監督與指導,從督導評估轉變為實時評估,可以實現大規模的實時溝通與協作,促進社會化分工,促進職業院校內部重構管理業務流程,使管理智能化、網絡化、專業化。
(八)人工智能背景下職業教育的組織模式
人工智能時代信息科學技術的蓬勃發展沖擊著學校內部的組織結構向智能化、網絡化的方向發展,各職業院校需要合理調整內部組織結構和資源分配,通過互聯網加快信息流動等方式,提高各職業院校組織管理的效率和活力。人工智能背景下職業教育的組織模式的建構表現為:首先,當今時代人工智能的產生不可能替代學校教育,但可以改變學校教育的基本業務流程。人工智能推動了學校組織結構向網絡化方向發展,教學與課程是提供信息數據的重要平臺,學校組織則構成了教育大數據生態系統。其次,“互聯網+職業教育”的跨界融合將打破學校的圍墻的阻隔,互聯網將學校組織與企業、科研院所等社會機構緊密聯系起來,提供優質教育資源供給,共同承擔知識的傳授、傳播、轉化等功能,促進學校組織體系核心要素的重構。第三,建設“智慧校園”,實現線上線下融合的智慧校園育人環境,實施一體化校園網絡認證,推動智能化教育資源共建共享,實現職業教育信息化建設的均衡發展。
五、人工智能背景下職業教育的模式變革面臨的挑戰及發展目標
人工智能將推進大數據、云技術等智能信息技術深層次融入職業教育課程與教學、組織與管理、評價與反饋等領域,形成社會化多元供給,為學習者提供多樣化的參與方式、自主選擇的學習形式和及時獲得反饋的評價途徑,有利于實現職業教育的共建、共享、共治。但其全面實現,還面臨著諸多挑戰。
(一)挑戰
首先,職業教育的新模式建構需要充足的資金支持。各職業院校積極建構智慧校園,努力實現智慧化產學研環境,打造一體化智慧城市網絡等核心技術的開發,都需要資金的根本保障。政府要給予資金政策保障并加強監管,資金管理部門要合理規劃,合理利用,??顚S?,落到實處。其次,職業教育的新模式建構的成果表現離不開學習者對技術的理解、掌握和應用。在實際實施過程中,教育工作者既要利用信息技術優勢變革職業教育,也要避免技術中心主義傾向,“避免一味追趕技術新潮而不顧學生身心健康等,技術本身是一個禍福相依的辯證法?!盵14]第三,“目前的教育實踐中,仍未能充分實現人機合理分工和雙邊優勢互補。人工智能終端系統擅長邏輯性、單調重復的工作,而人類則更適合情感性、創造性和社會性的工作?!盵15]現階段,信息化技術水平還有待提高,智能機器不能完全勝任知識傳播、數據處理等工作,有待于進一步開發和完善,絕對依賴互聯網絡和設備,還存在一定的風險。
(二)發展目標
人工智能時代職業教育變革重新架構了職業教育發展模式,完成了對資源的重新整合配置,改變了人的思維方式、學習方式和生活方式。人工智能時代下沒有職業教育模式的改革,就不可能建構真正的現代化職業教育。人工智能背景下職業教育的發展目標可以概括為個三方面:
1.“智慧腦”與“智能腦”融通
隨著第四次產業革命的到來,信息技術爆發式發展,造就了以電腦、互聯網為基礎的智能腦。職業教育智慧化發展的一個目標就是如何讓學習者發揮人腦“智慧腦”與機器設備“智能腦”的“雙腦”共同協作[16]。人工智能時代職業教育與信息技術的深度融合,就是要通過“智慧腦”和“智能腦”的協同作用,發揮互補優勢,進行融通式學習,而不是簡單地人腦與電腦的技術對接。
2.“現實世界”與“虛擬世界”結合
在人工智能時代,網絡虛擬技術的發展使人類擁有了真實與虛擬兩個世界,虛擬信息技術的興起在一定程度上會影響職業教育的實體教育,實體教育的發展也需要虛擬技術的支撐。但在具體的學習實踐中,還會存在利用這兩個世界時顧此失彼、難以平衡的問題。目前,虛擬化教育技術在職業教育領域不斷應用與推廣,職業教育的發展模式不斷優化,使得職業院校線上線下的邊界逐漸消融,“現實世界”與“虛擬世界”更好地結合。人工智能時代職業教育的本質沒有發生根本改變,學習者要學會利用這兩個世界虛實融合、高度互動,充分發揮出自身的優勢,更好地學習與生活。
3.職業教育“適應人工智能”發展為“引領人工智能”
人工智能為職業教育帶來了強大的技術支持,為職業教育帶來了便利。初始階段的職業教育基本知識和技能被數字化和智能化,通過人工智能相關課程,云教育模式,個性化學習計劃等,適應并應用人工智能,以提高職業教育的效率和質量。職業教育重在技術創新,對于行業技術發展具有一定的引領性作用。未來人工智能將成為職業院??焖侔l展和轉型的技術支撐?!叭缒承┞殬I院校基于自身優勢專業與相關行業的智能自動化企業合作,實現以職業教育發展引領人工智能。”[17]目前,人工智能處于適應性大發展階段,隨著信息化技術的提高和智能化設備的普及,人工智能時代必將由專用人工智能時代步入通用人工智能時代。在通用人工智能時代,人工智能與職業教育深度融合高效協作,職業教育完全適應且完美應用于人工智能,進一步引領人工智能發展,由“人工智能+職業教育”發展為“職業教育+人工智能”的時代。
關鍵詞:人工智能;教學改革;教學方法
引言
人工智能(ArtificialIntelligence)是一門研究和模擬人類智能的跨領域學科,是模擬、延伸和擴展人的智能的一門新技術。由于信息環境巨變與社會新需求的爆發,人工智能技術的日趨成熟。隨著AI3.0時代的到來,大數據、云計算等新技術的應用也愈發廣泛,對于管理類人才來說,加強對人工智能知識的深入學習,不斷將人工智能技術與管理知識結合起來,對其未來職業生涯的發展有著重要作用。人工智能是一門前沿學科,管理學院開設人工智能課程的目的是為了更好地培養學生的技術創新思維與能力,基于其覆蓋面廣、包容性強、應用需求空間巨大的學科特點,通過概率統計、數據結構、計算機編程語言、數據庫原理等基礎課程的學習,加強學生解決實際問題的能力,為就業打下基礎。本文基于社會對于人工智能領域的人才需求,結合諸多長期從事經管類專業課程教學的老師意見,針對管理類人才的人工智能課程教學內容與方法進行探討,以期對中國高校人工智能課程教學改革研究提供幫助與借鑒。
1、教學現狀與問題
作為一門綜合性、實踐性和應用性很強的理論技術學科,人工智能課程內容及內涵及其豐富,外延極其廣泛。學習這門課程,需要較好的數學基礎和較強的邏輯思維能力。針對管理類人才,該課程在課程教學過程中存在幾個較為突出的問題。(1)課堂教學氛圍枯燥目前,中國大多數大學仍采用傳統的課堂教學模式,在教學過程中照本宣科,忽略與學生的互動,并且缺乏能夠有效引起學生學習興趣與加深知識理解的教學環節設置,如此一來大大降低了學生自主思考的能力。在進行人工智能相關課程知識講解時,隨著章節的知識難度不斷增加,單向介紹式的枯燥教學方式無法反映人工智能學科的全貌,課堂講解難以同時給以學生感性和理性的認知,部分學生因乏味的課堂氛圍漸漸無法跟上教學進度,導致學習動力不足。(2)基礎課程掌握不牢管理類專業的學生大部分都會走向更加具體化的管理崗位,具有多學科的素養,但這也導致很多學生所學知識雜而不精。學生在基礎不夯實的情況下去學習更高層面的知識,給學生學習與老師教學都造成了很大困擾。人工智能課程知識點較多,涵蓋模式識別、機器學習、數據挖掘等眾多內容,概念抽象,不易學習。一些管理類專業的學生未能熟練掌握高等數學、運籌學、數據結構、數據庫技術等先修課程,缺乏一定的關聯思考和研究意識,導致課程學習難度增加,產生學時不足和教學內容難點過多的問題。(3)教學與實際應用脫節當下,人工智能廣泛應用于機器視覺、智能制造等各個領域,給學生提供了大量的現實案例,使得人工智能不再是高深莫測的理論,而是現實中可以觸及的內容。例如,在機械學科領域,人工智能技術是電氣工程、機械設計制造、車輛工程等方向的重要技術來源;在醫療領域,是醫療器械的創新生產源動力;在能動領域,是高端能源裝備與新能源發展的重要驅動;在光電信息與計算機工程領域,技術的發展時刻推動著智能科學與技術核心價值的提升。然而,對于管理類專業的學生來說,現階段的人工智能教材涵蓋許多智能算法及相關理論,在教學過程中常常涉及到很多從未接觸過的抽象理論和復雜算法,書本中的應用實例大多紙上談兵,缺乏專門適用于管理類專業知識與人工智能技術相結合的教學實踐,加上一些教師授課方法單一,不利于引導學生將人工智能算法應用于現實生活。另外,大學生對知識的理解能力差異很大,教師采用統一的方式教給他們,這使一些學生無法跟上和理解,教師也無法控制學生的學習狀況,導致學生缺乏動力。因此,如何結合學生的現實情況,提高他們的動手能力和實踐經驗也是人工智能課程教學要考慮的問題。
2、管理類人才的人工智能課程教學改進策略
課程教學改革是一項提高大學教學效果和人才培養質量的重要手段。如何在時代背景下應用新技術和新思想進行實施課程教學改革是高校亟待解決的問題。對于高校的教學工作而言,教學目標、教學內容和教學方式的變化不再是課程資源的簡單數字化和信息化,而是充分利用時代信息資源優勢的新型教學模式。針對管理類專業人工智能課程教學過程中存在的問題,可以從教學方法改進和教學內容設置兩個方面進行課程教學改進。
2.1教學方法改進
教師對學生具有引領作用,其教學方法的改進能夠帶動學生改進自身學習方法。(1)啟發式案例教學案例教學法就是教師根據教學目標、教學內容以及教學要求,通過安排一些具體的教學案例,引導學生積極參與案例思考、分析、討論和表達等多項活動,是一種培養學生認知問題、分析和解決問題等綜合能力的行之有效的教學方法。啟發式案例教學以自主、合作、探究為主要特征,調動學生的學習積極性,并緊密結合人工智能領域的相關理論與方法,有效理解知識要點及其關聯性,適用于管理類專業學生的教學。具體而言,高?;谄鋯栴}啟發性、教學互動性以及實踐有用性等特點,可以建立基于人工智能知識體系的教學案例庫,雖然這項建設將極具挑戰性與耗時性,但具有很強的積極效果:培養學生較強的批判性思維能力,更多地保留課程材料,更積極地參與課堂活動,對提高教學質量、培養具有人工智能背景的管理類人才具有重要意義。例如,通過單一案例教學,讓學生掌握相關基礎知識原理及應用;通過一題多解的案例使學生思考如何獲取最有效的解題方法;通過綜合案例的設計,啟發學生全方位地探索問題的解決方案。(2)研討互動式教學研討互動式的各個教學環節是逐漸遞進、有機結合的。研討是基于學生個體的差異性,在課堂討論的過程中對學生做出評判,從而對不同類型的學生開展針對性的教學?;觿t是在研討的基礎上,通過老師與學生、學生與學生的互動,讓學生主動參與到課堂教學的過程中來。在人工智能課程教學過程中,教師通過課堂討論了解學生對于知識點的掌握情況,可以有針對性地設計教學內容,例如,對于學校積極性不強的學生,將人工智能理論內容與學生個人興趣范疇、社會產業發展及研究現狀聯系起來,能夠極大程度地提高學生學習的自主能力;對于基礎知識較為薄弱的學生,可以在教師的指導下查閱相關文獻資料,根據自己的理解撰寫心得報告,并在課堂或課外進行師生互動。像這樣研討與互動相結合的模式。有助于增強學生的探索和求知欲望,建立起濃厚的學習氛圍。(3)有效激勵式教學人工智能是引領未來的戰略性技術,人才需求量極大,對教師的教學水平也提出了更高要求,因此,進行有效激勵極為重要。在學生激勵方面,可以舉辦各類人工智能競賽項目,設置相應項目獎學金,吸引學生參與實踐,調動學生做研究、發論文的積極性。例如,教育部主辦的中國研究生人工智能創新大賽,圍繞新一代人工智能創新主題,激發學生的創新意識,提高學生的創新實踐能力,為人工智能領域健康發展提供人才支撐。高校也可以借鑒這種模式,在各學院乃至全校開展此類競賽項目,激發學生的創新能力與團隊合作能力,鼓舞更多學生加入到人工智能課程的學習中來,激發其學習興趣。在教師激勵方面,在教師聘任和提升過程中把參加學生課程制定、課堂與課外作業、課程項目和論文指導等看作教學任務的一部分,鼓勵教師積極參與這些活動。(4)學科滲透式教學人工智能學科知識融合程度較高,學科交叉性強?;谌斯ぶ悄艿膶W科交叉性特點,增強管理類人才對學科應用的領悟,可以采取開展學科滲透式教學的方法。從2015年起,國務院和教育部先后印發了《國務院關于積極推進“互聯網+”行動的指導意見教育》、《高等學校人工智能創新行動計劃》等文件,“互聯網+”、“智能+”已經滲透到各個領域,人類進入數字經濟時代,社會需求“技術+管理”的高端復合人才。例如,基于工業4.0和強國戰略,人工智能技術在智能制造的應用極為廣泛。上海理工大學非常重視少數民族預科班的教育質量。為增強少數民族管理類人才對該領域應用的認識,我們請機械工程、能源動力領域的相關專家以授課或講座的形式,進行相關領域知識和發展趨勢的講解,使學生理解更為透徹。此外,在教學實踐過程中,還可以用舉辦人工智能知識交流會、線上人工智能論壇等形式,促進不同專業間老師、學生對于人工智能知識模塊的見解,相互交流、滲透和學習,從而推動人工智能課程教學的改進。
2.2教學內容設置
世界一流大學在人工智能課程內容設置根據不同國家的教育體系設置,肯定會有不同,但頗有共通之處。本文借鑒世界頂尖大學經驗,針對管理類專業人工智能課程教學內容進行研究,結合中國教育體系設置,認為應從以下幾方面進行改進。(1)核心內容設置為避免學生因為知識點過多而出現雜而不精的問題,勢必要精化教學內容。在互聯網時代,我們可以使用云計算和其他方式來實現數據信息的傳輸、存儲和處理,通過在線收集和整合網絡課程相關數據,挖掘和豐富教學資源,并在整合課程資源的基礎上,進行研究方法和前沿知識的擴展。在核心內容設置方面,可以通過收集到的數據資料,選擇人工智能領域具有代表性且難易程度適中的知識作為重點,使學生能夠在有限的學時內掌握人工智能的知識脈絡。例如,編寫針對管理類人才的人工智能教材,內容涉及緒論、知識表示與推理、常用算法、機器學習、神經網絡等方面的同時,重點增加相應知識點在管理上的應用案例,加強學生對知識點的理解。同時,根據管理類專業偏向領域,開設關聯程度較大、應用較廣泛的人工智能選修課程,以便學生根據自己的興趣與需求選修具體方向的課程。(2)注重學生的數理及編程基礎良好的數理及編程基礎是學習人工智能的前提。只有具備了這些基礎,才能搞清楚人工智能模型的數量關系、空間形式和優化過程等,才能將數學語言轉化為程序語言,并應用于實驗。管理學院人才的數理及編程基礎相對薄弱,因此,在安排學生學習人工智能課程之前,建議開設面向全體管理類專業學生的微積分、線性代數、概率論等專業基礎數學課程以及C語言、python等編程基礎課程,使學生具備數學分析的基礎與一定編程基礎,為學習人工智能課程打下堅實的基礎。另外,可以推進MOOC平臺建設,在平臺上開設人工智能網絡課程,幫助學生掌握人工智能知識基礎及專業技能。(3)實驗建設為了加強學生對于人工智能知識點間的關聯性理解,可以基于不同的應用模塊,設計具有前后鋪墊、上下關聯的綜合性實驗,設計不同層次的項目要求,同時基于相同的實驗課題,讓學生分組對實驗課題進行攻克,并設置多元化的實驗評價體系,通過實驗教學過程中反映出的不同進度,讓教師能對學生的學習水平做出準確評判,及時進行教學反思,以便更好地開展下一步工作。例如,針對人工智能課程應用中很廣的遺傳算法,在某一管理規劃的具體應用上設置理解-實現-參數分析-具體應用-嘗試改進-深度拓展的不同層次的項目要求,在這些項目層次中規定必做項與可選項,讓學生基于同一實驗課題進行合作學習,然后通過個人自我評價、小組成員互相評價以及教師評價的方式進行打分,對小組整體能力以及個人能力進行綜合評估,以期培養學生的自主思考能力。
關鍵詞:人工智能;大數據;交叉領域
自二戰時期阿蘭?圖靈破解恩尼格瑪密碼機帶來勝利的曙光之后,人工智能初見苗頭,1956年“人工智能”一詞首次由約翰?麥卡錫等科學家在達特茅斯研討會上提出,時至今日,人工智能經歷了60多年的浪潮和洗禮,其中有曙光、有冰封,也有期望。縱觀當下,人工智能不僅僅是機器智能,在深度學習和推陳出新的算法推動下,其攜手云計算、大數據、卷積神經網絡等,攻破了自然語言語音處理、圖像識別的瓶頸,像潘多拉的盒子一樣在認知科學、機器人學、機器學習等領域全面開花,人工智能涵蓋了從基礎層、技術層到應用層等多個方面,為人類文明帶來了翻天覆地的變化[1-2]。人工智能包羅萬象,在其基礎上衍生的大數據“洪流”對人類社會的方方面面進行沖擊,這些數字的價值已然超越了諸如金錢、財產、黃金、石油,甚至是土地。然而,大數據技術也如同普羅米修斯盜得的圣火,一方面給人間帶來溫暖和光明,另一方面也有可能使自身被奴役甚至使人葬身火海[3]。因此,當我們沉迷于大數據的海洋中時,我們是否有能力像藍鯨遨游大海一樣自由掌舵,是當今大數據和人工智能時代存在的一個重大問題。是“曲徑通幽”還是“會當凌絕頂”,我們如何在大數據中“浮游”,而不是一味地擴充,需要理性看待與合理評價大數據對人類生存和發展的影響。
1.人工智能和大數據與“工業革命”
2020年剛剛結束的新一輪美國總統競選上演了各種“國家鬧劇”,為何特朗普在2016年贏得大選,而4年之后卻無法連任?時間推移,2016年他勝利的部分原因在于他利用了面臨技術威脅的工業行業中工人們的焦慮,同時指責非法移民對美國及美國人資源和就業機會的占用[4]。但在技術浪潮的挑戰中,自動化和人工智能才是占用的“根源”。早在18世紀60年代工業革命時期,機器取代人力,規?;S生產取代個體手工生產,即引發了人工智能數據的工業大變革。從機械結構、電氣控制等模塊的設計和改良,車間機器人的智能化已可以代替人完成生產作業[5]。通過智能化機器人可以減輕勞動負擔,還可以用于環境檢測[6]和實施救援[7]等,保護我們的人身安全。這些“機器人”在為我們減負的同時確實也引發了“失業危機”,這種現象不僅于美國,日本、韓國和德國亦是如此。我們也許可以形象一下,未來20或30年后,工廠中工傷幾乎為“零”,完全實施機器人24小時作業,速度驚人,質量統一,而僅有的幾個人使用簡單的觸摸界面對機器下達“命令”。機器的發展已超乎我們對普通機械的認知,21世紀開發的三大機器人中大狗(BigDog)解決了運動和重載運輸問題,特別用于軍事領域,被譽為“當前世界上最先進適應崎嶇地形的機器人”;亞美尼亞(Asimo)從人類如何移動上展現了機器人仿人運動;Cog具有了人類所特有的思考,由不同處理器組成的異種機互聯網絡形成了“大腦”。特斯拉——其除了是電動汽車和能源公司外,還是自動駕駛汽車行業的領跑者之一。其2016年已銷售具有自動駕駛、自動自制和自動停車功能的電動汽車,但出于法律和倫理層面,駕駛員還是要坐在駕駛位上,但他可以做他想做的其他事,發短信、打電話或是休息,而不再是駕駛汽車。我們可以不用擔心酒駕,不用因為時間緊張而疲勞駕駛,不必為新手司機而變得脾氣暴躁……汽車自動駕駛將讓我們行駛得更規則、更安全和更“無聊”。自動駕駛上的智能進化,使得自駕型派送車為商業化服務成為可能,還有自駕型飛行器也在被研發,通用、寶馬、谷歌等公司一直在努力開發,通過無人機在您家門口投送包裹將對電子商務世界帶來更多創造性方案。“如果你夠走運的話,機器可以把你當成寵物?!彪m為戲謔之言,卻又飽含心酸。工廠變得越來越自動化,但其仍需要人類專家,他們才知道如何監控傳感器,知道在發生故障時如何進行修復,機器的運行離不開人的監控,只有人的思考才能有新產品的誕生以及高效的生產流程,我們與機器共存,是從體力中解放,但要從事腦力工作。
2.人工智能和大數據與金融的未來
“數字蝶變”席卷金融行業各個領域[8],金融行業應用大數據、移動互聯網、人工智能等先進信息技術,累積了非常多的客戶信息。通過大數據的幫助,金融公司在分析數據下尋找更多的金融創新機會。在商業智能(BI)的輔助下,電信業可以對客服描述和定位及需求進行預測;保險業可以在進行風險分析的同時進行損益判斷;銀行業可以調整市場活動,建立信貸預警機制等等[9]。人工智能和大數據讓金融業形成了“以客戶為中心”的模式。與客戶最密切的金融即是金錢,但是它們已經被“支付寶”和“微信”以及更多的電子支付方式取代,越來越少的人使用現金,數字金錢是否會完全取代物質金錢,我們很可能會發展為無現金社會。那么首先“下崗”的是誰呢?答案毫無疑問:銀行。巴克萊銀行前首席執行官安東尼?詹金斯曾預測,對于工業化國家,銀行員工和其分支機構在未來10年內會消失;花旗全球視角與解決方案的一項研究預測,美國和歐洲的銀行將在未來10年裁減約180萬員工;甚至2016年2月的一份丹麥銀行家協會新聞稿表示,銀行搶劫案數量連續第5年下降。就支付領域而言,在這樣的時代背景下,如何利用大數據技術對跨越式發展的支付行業進行監管,成為一個值得深入研究的課題[10]。在人工智能下,我們都有被銀行自動回復或自會讀取特定問題的“員工”惹惱過。溝通技巧和財務知識同樣重要,因此,銀行業員工的下崗只是在基礎性操作上,對于“專業咨詢”,需要更多受過高等教育、具有更好溝通能力的員工。目前,我國的多數銀行還沒建立“開放、共享、融合”的大數據體系,數據整合和部門協調等問題仍是阻礙我國金融機構將數據轉化為價值的主要瓶頸。大數據的整合、跨企業的外部大數據合作不可避免地加大客戶隱私信息泄露的風險。有效防范信息安全風險成為商業銀行大數據應用中急需解決的問題。
3.人工智能和大數據與“專家系統”
電子病歷數據、醫學影像數據、用藥記錄等構成了醫療大數據。醫療數據不僅包括大數據的“4V”特點,即規模大(volume)、類型多樣(variety)、增長快(velocity)、價值巨大(value),還包括:時序性、隱私性、不完整性和長期保存性。醫療大數據可以提供預警性,當數據發生異常時,通過一定的機制可以發出警告,從而迅速采取相應措施,及時解決問題[11]。成立于1989年的美國胸外科協會(STS)數據庫,至今已經涵蓋了美國95%的心臟手術,收集了500萬條手術記錄[12]。其中的先天性心臟手術(CHSD)數據庫是STS數據庫的重要組成部分,是北美最大的關注兒童先天性心臟畸形的數據庫,被認為是醫學專業臨床結果數據庫的金標準。近年來,基于CHSD數據庫所進行的數據挖掘不斷增加,大型數據庫對提高醫療質量所起到的正向作用正在日益凸顯。如Welke等基于CHSD數據庫探討小兒心臟外科病例數量和死亡率之間的復雜關系[13];Pasquali等基于CHSD數據庫探討新生兒Blalock—taussig分流術后的死亡率[14];Jacobs等基于CHSD數據庫采用多變量分析方法來研究病人術前因素的重要性[15];Dibardino等基于CHSD數據庫采用多變量分析的方法來探討性別和種族對進行先天性心臟手術結果的影響[16]。這些都是在醫療領域采用人工智能提供的醫療診斷,形成了“專家系統”,專家系統可以說是一種最成功的人工智能技術,它能生成全面而有效的結果。借助醫療大數據的平臺,“專家系統”可以智能輔助診療、影像數據分析與影像智能診斷、合理用藥、遠程監控、精準醫療、成本與療效分析、績效管理、醫院控費、醫療質量分析等。不僅是數據平臺,“達芬奇機器人”可以看成醫療的高精尖“人工智能”,它能縮短泌尿外科手術以及術后患者恢復時間,促進患者早期下床活動,減低并發癥發生率[17]。達芬奇手術機器人在消化系統腫瘤、泌尿系統腫瘤、婦科腫瘤和心胸部腫瘤等手術中均有運用[18]。正是機器人,還有其他人工智能設備,如插入手表或衣服里的傳感器、植入我們皮膚下的芯片,以及智能手機中裝有各種“專家系統”的遠程醫療、預防醫學,甚至是器官的3D打印和虛擬現實治療等的發展,讓醫學發生相應的轉變,并使其逐步突破人類的傳統健康概念,那么是否意味著醫學將成為只有科學性,毫無直覺性的學科呢?我們攜帶的內部傳感器和外部應用程序將成為我們的醫生嗎?“你好,醫生”被“嘿,Siri”取代嗎?這不盡然。醫學必然將是向精準化發展,并更具個性化、參與性、預防性和可預測性。醫生不再是疾病的修理工,而是改善我們健康狀況的顧問。直觀當下,我們還是被“看病難”所困擾,我們提出“分級診療”,是在擁有家庭醫生、全科醫生和??漆t生的基礎上再加上人工智能,以實現預期的健康監測、輔助診療和疾病篩查。
4.人工智能和大數據與教育變革
面對各行業和各學科,教育作為傳承文明和創新知識的載體,似乎被排除在人工智能之外。就目前而言,人工智能與教育深度融合發展還存在技術基礎不穩、教育數據缺陷、算法能力不足等現實問題[19]。我國目前更想要做到的是在教育上消除“信息鴻溝”,促進教育公平、均衡發展。因此,目前可以看到人工智能的教育多在于語言學習軟件,通過虛擬技術和人工智能構建一個靈活的、可擴充的虛擬交互平臺,設計多維虛擬場景和智能人工角色,實現不同場景下人機角色的交流和學習,提升學習者的口語能力和語感知識[20]。這使得教師不再是唯一的知識傳播者,任何互聯網搜索引擎都將提供比教師所有的更多信息,并且可以更快捷地獲取。肺炎疫情暴發以來,遠程網絡教育成了主要教學形式,互聯網教育形式其實早在小學、中學和大學中運用,虛擬現實技術在教學領域的研究和探索也在全面展開。谷歌已經開發一款VR紙板視圖,并將研發的虛擬課程一起推向市場,使現實生活中在生物課上解剖一只青蛙成為一件容易且有趣的事,通過虛擬青蛙,學生們可以去除心臟和其他器官,而不再是象征性的抽象體驗。虛擬現實可以像互動游戲一樣,比單一的在教室聽老師授課帶來更多樂趣和體驗,學習效果可能更好。我們的學習是知識的積累,那么教育就是我們的庫,荀靜等結合自身情況對西安工業大學知識庫構建進行探究,認為機構知識庫在保存知識資產的同時,更重要的是促進學校知識資產的傳播利用和管理,提升學校影響力和學術聲譽[21]。劉暢等通過對東北大學機構知識庫服務的推廣研究,了解到開放獲取的概念和實踐已經受到了廣泛的認可,機構知識庫不僅可以成為一個知識的存儲庫,也可以成為各個學科領域的學者進行在線交流的平臺,提供個性化的增值服務,既有利于機構知識庫的內容建設,也可以進一步促進學術交流和科研合作[22]。知識庫,即大數據的有機整合和有序利用,是學術成果、視頻文檔、實驗數據等進行收集、長期保存、傳播和提供開放利用的知識資產管理與教育服務[23]。
5.人工智能和大數據應用的共性需求
人工智能和大數據時代,海量的信息來自“五湖四海”,但都通過互聯網絡匯聚智能終端。這些數據只會進一步增多,不僅僅是云存儲,對于信息的進一步挖掘、處理、分析和利用,目標性結果才是我們最想要的信息。全球包括IBM、微軟、谷歌和亞馬遜等一大批知名企業紛紛掘金大數據挖掘這一市場,大家都在開拓自己大數據分析平臺。數據挖掘是大數據時代孕育的產物[24],是我們的共性需求,與傳統的統計分析技術相比,數據挖掘有著自身的本質特征,數據挖掘是在沒有明確假設的前提下去挖掘信息并發現知識。數據挖掘所得到的信具有先前未知、有效以及可實用三個特征[25]。數據挖掘的出現不是為了替代傳統的統計分析技術,相反,它是統計分析方法學的延伸和擴展[26]。隨著信息時代的到來,數據挖掘被越來越多地應用于各個領域。
6.人工智能和大數據的展望
大數據與人工智能相輔相成,在人工智能的加持下,海量的大數據輸出優化的結果,使人工智能向更為智能的方向進步,大數據與人工智能的結合將在更多領域中擊敗人類所能夠做到的極限。漫長的人類歷史發展和進化,信息和人類一直“纏纏綿綿”“你追我藏”,因此,我們應該明白信息就是信息,我們需要的是“維基百科”,而不是僅僅的“維基”。走出狹隘的信息資源,管理和洞察大數據,才是對數據的有用。因為,我們早已告別了數據庫放在一間房間的時代。此刻不得不提藍鯨法則——大數據之道:了解數據懂得利用數據的“浮力”才是關鍵;“以簡約為目標”將數據最終形成洞察及行為;可以通過“數據”“信息”“知識”流程式、組合式、直通車式各種需要的方式來獲取[27],在簡約中“印象”處理繁雜的大數據,使之“為我所用”。=數據也是一門科學、一項技術,如果實驗不能證明其具有可重復性和一般性,那它是沒有科學依據,但是,任何一項科技,如果你堅信它必將改變社會和商業,選擇從長期展望其發展并持續付出努力,那么就是一種戰略選擇[29]。人類社會的政治、經濟、文化、思維等固有“態勢”被重刷,數據思維將為我們帶來一個智能全新的世界觀。
政策驅動也是重要動力,科技巨頭搶先布局引發示范效應。智能化時代,各國從國家戰略層面加緊人工智能布局,美國的大腦研究計劃(BRAIN)、歐盟的人腦工程項目(HBP)、日本大腦研究計劃(Brain/MINDS),而我國也在“十三五”規劃中把腦科學和類腦研究列入國家重大科技項目。企業布局方面,谷歌、Facebook、微軟、IBM等均投入巨資,其示范效應是產業進步的先兆;國內百度、阿里、訊飛、360、華為、滴滴等也加緊布局。15年行業投資金額增長76%,投資機構數量增長71%,計算機視覺和自然語言處理占比居前。
產業鏈格局已現,上游技術成型、下游需求倒逼,計算機視覺產業應用最成熟。產業鏈初步格局已現,從基礎層和底層技術,再到應用技術,最后再到行業應用,除了近年來底層核心技術的突破,下游行業需求倒逼也是人工智能應用技術發展的重要動力,諸如人機互動多元化倒逼自然語義處理、人口老齡化倒逼智能服務機器人、大數據精準營銷倒逼推薦引擎及協同過濾,等等。其中計算機視覺應用技術的發展可能是最先發力的,國內不乏世界一流水平公司。
2B應用首先爆發,“人工智能+金融、安防”應用前景廣闊?!叭斯ぶ悄?”將代替之前的“互聯網+”,在各行業深化應用,安防、金融、大數據安全、無人駕駛等等。生物識別和大數據分析在安防和金融領域的應用則是目前技術最為成熟、產業化進程較快,如智能視頻分析、反恐與情報分析、地鐵等大流量區域的監控比對;金融領域的遠程開戶、刷臉支付、金融大數據采集、處理、人工智能自動交易、資產管理等。相關推薦標的:東方網力、佳都科技、川大智勝,建議關注大智慧、遠方光電。
逐漸向2C端應用擴展,看好“人工智能+無人駕駛、教育”。人工智能在無人駕駛領域的應用體現在三方面:(1)環境感知環節的圖像識別;(2)基于高精度地圖和環境大數據的路徑規劃、復雜環境決策;(3)車車交互、車與環境交互下的車聯網,智能交通管理。教育領域應用方面,人機交互重構更互動性的教學;大數據和深度學習的結合使得個性化教學成為現實,這也是在線教育最重要的突破點;此外包括VR在內的多載體應用和多屏互動也是發展趨勢。相關推薦標的:四維圖新、千方科技、東軟集團、科大訊飛、長高集團、新開普。
關鍵詞:人工智能;計算機網絡教學;現狀;運用
中圖分類號:TP393-4
所謂人工智能,就是利用人工方法在計算機上實現智能,也可以說是人工智能在計算機上的一種模擬。人工智能廣泛融合了神經學、語言學、信息論和通訊科學等眾多學科和領域。目前主要存在三條人工智能研究途徑:一是以生物學理論為支撐,掌握人類智能的本質規律;二是以計算機科學為支撐,通過人工神經網絡進行智能模擬,實現人機互動;三是以生物學理論為支撐。
1 人工智能技術的特征
智能技術主要分為兩類,人類和計算機智能,兩者存在相輔相成的關系。利用人工智能技術能夠實現人類智能向機器智能的轉化,相反,機器智能也能夠利用智能教學轉化為人類智能。
1.1 人工智能的技術特征。首先,人工智能具備非常強的搜索功能。該功能是利用相關搜索搜索技術實現對海量信息的快速檢索,滿足個性化信息需求;其次,人工智能具備很強的知識表示能力。具體來講,就是人工智能對信息的行為,能夠像人類智能一樣,對模糊的信息加以表示;最后,人工智能具有較強的語音識別和抽象功能。前者主要是為了對模糊信息加以處理。而后者主要是為了對信息重要度加以區分,以便提高信息處理效率。用戶只需要智能機器提出具體要求便可,至于復雜的解決方案就交給智能程序了。
1.2 智能多媒體技術。首先,人機對話更加靈活。傳統多媒體在人機對話方面極為欠缺,導致教學單調乏味,不能取得預期良好效果,但智能多媒體卻不然,他能夠實現人機自由對話和互動,同時還能結合學生實際對學生的問題給出不同層次的答案。其次,教學可行性更強。由于學生在認知能力和個人素養方面都存在差異,而且學習主動性也不盡相同,人工智能必須要結合學生實際學習狀況,為每一位學生設計制定個性化的學習計劃和學習目標,對學生進行針對性較強的教學,真正實現因材施教。再次,具有強大的創造性和糾錯性。前者屬于人工智能的顯著特征,而后者屬于人工智能的重要表現方面。最后,智能多媒體具有老師特征。在實際教學過程中,智能多媒體可以對教學雙方的行為進行智能評價,以便能夠及時發現教學中的薄弱點,有助于實現教學相長,全面提高教學質量和教學效果。
2 計算機網絡教育的現狀
隨著現代科學的進步,網絡信息的發達,人們的教學觀念和學習觀念都發生了前所未有的改變,網絡時代正全面到來。為了滿足現代社會對人才的實際需求,培養大量現代化優秀人才,計算機網絡教學模式業已成型并不斷完善。目前,高校正規教學模式依然是現代教學主流,盡管在系統傳授知識和規范培養人才方面具有無可比擬的優勢,但在資金投入、效益創收和時空限制等方面具有很大的弊端,靈活性不足,無法有效滿足現代教育的發展要求。
計算機網絡教學對傳統教學形成了巨大挑戰,并產生了深遠影響。它不僅有效彌補了傳統教學的時空限制缺陷,而且賦予了教學極大的樂趣性,吸引了越來越多的人積極投身到網絡教學建設中去,任何人無論何時何地都能夠通過網絡課堂去學習和提高。但目前計算機網絡教學發展仍處于探索期,在實際運用方面還存在許多問題:第一,計算機網絡教學中的學習支持服務體系尚不健全,導學手段和答疑方法還非常落后,由于各種原因,在服務方式上缺乏針對性、策略性和積極性;第二,計算機網絡實驗教學中存在著空間分散、時間流動和自主性差等問題和弊端;第三,計算機網絡的系統承載能力和信息查詢能力還十分有限;第四,如何實現計算機網絡考試的開放性,確保考試的客觀性、公正性、權威性,已經成為網絡教學發展的瓶頸;第五,計算機網絡教學中的核心支撐系統――CAI,還無法有效滿足和適應網絡教學的實際需求和發展要求。
主流CAI課件主要有兩種,一種是單機版的初級課件,包括簡單的Authorware課件、PPT幻燈片和圖文網頁等。一種是高級的網絡版課件。該類課件主要以靜態圖文和動態演示組成的網頁為主,以聊天室、電子郵件和QQ群等形式為輔,實現師生互動、網絡答疑的一種改進型課件。初級課件在實際教學中以操作容易、更新及時和維護方便著稱,但實際上就是傳統教學手段的變相挪用。還有些課件,盡管在互動性方面有著不錯的效果,但是制作繁瑣、更新較慢和維護復雜。因此,高級網絡課件是目前網絡教學中的主流課件,已經成為了計算機網絡課件的固定模板。改進型的網絡課件有效地解決了傳統多媒體在師生互動不足的問題。上述兩類課件是現在最為常見的兩種CAI課件,盡管兩者都有各自的優勢,但作為網絡教學的重要手段,仍存在許多問題和弊端:無法實現因材施教,無法開展層次教學;作為教學的一大主體,學生在個性化交互操作方面仍有很大不足;對學習過程中出現的普遍問題無法進行智能統計、分析和評價等。
3 人工智能技術在計算機網絡教學中的運用
3.1 人工智能多媒體系統。(1)知識庫。智能多媒體已經不再是用來進行紙質媒體數字轉化的工具了,它應該具備相應完善的知識庫,而知識庫里的教學內容要結合教學實際和學生現狀進行針對性、個性化設計。同時,要實現知識庫資源的高度共享,并及時加以更新和補充,如此才能充分發揮知識庫的教學服務作用。(2)教學板塊。教學板塊的設計主要是出于教學綜合性考慮的,教學方法的創新是其關注的重點內容。該模塊的實現要以掌握專業知識、教學策略和人機對話等領域的知識為前提,結合學生實際學習現狀和特點,利用智能系統的現代化技術手段對知識和相關教育措施加以高效搜索。(3)學生板塊。及時掌握學生心理動態和學習狀況是智能網絡教學的一大特征,結合學生實際狀況加以智能評判,進而加以針對性指導和個性化輔導,實現因人施教和因材施教,全面提高學習效率和學習質量。(4)用戶模塊。用戶模塊是智能系統無法忽視和省略的關鍵模塊,整個智能系統的正常運行離不開人工程序操作,用戶需要通過用戶終端將教學內容上傳到網絡教學平臺,才能順利完成教學。
3.2 人工智能多媒體教學的發展。(1)加強與網絡的結合。隨著網絡技術的成熟,智能網絡教學與網絡之間的關系日益緊密,多元化、多維度網絡空間日益成為一種趨勢?;ヂ摼W具有信息量大、更新速度快、超時空性等優勢,加強與網絡的結合是人工智能計算機網絡教學未來發展的重要方向。(2)加強智能的應用。人機對話、機器指導的教學模式將成為未來網絡教學的核心模式,傳統教師的角色將逐漸被計算機取代。最為典型的就是現代智能導航系統。(3)加強系統軟件的研發。系統軟件的更新日新月異,舊的系統軟件已經無法有效滿足網絡發展的時代要求,加強系統軟件的研發以便充分滿足網絡要求,更好地幫助學生解決實際問題,進而提高學習效率和教學質量。
4 結束語
人工智能技術在計算機網絡教學中的運用將為現代化教育提供新的發展思路,將全面改善網絡教學環境,拓展學習服務渠道,提高計算機網絡教學質量,并有可能徹底打破計算機網絡教育的時空限制,全面加強網絡教學的開放性,實現網絡學習的個性化、人性化和智能化,充分落實以學生為本的教學理念。未來CAI技術的進一步成熟將全面提高網絡教學的整體格局,我們有理由相信,智能網絡教學將迎來全新的發展春天。
參考文獻:
[1]劉廣鐘,高軍,劉,李吉彬.報文分析技術在計算機網絡教學中的應用[J].計算機教育,2014(01).
[2]趙冉,朱西方.仿真技術在高職計算機網絡教學中的應用探討[J].河南科技,2014(01).
關鍵詞:人工智能;圖形編程;創新實踐
近年來,人工智能已成為一個高頻詞,各種與人工智能相關的智能家居、自動駕駛、智能語音、圖像識別等新技術,深刻影響著社會的方方面面,也逐步改變人們的工作及生活方式。許多國家已經開始積極嘗試,大力推進小學人工智能教學。2017年,國務院正式頒布《新一代人工智能發展規劃》,明確提出了“在中小學階段設置人工智能相關課程,逐步推廣編程教育”;如今,計算思維培養又成為熱點。在這樣的一個時代背景下,學校和教師有責任和義務組織、引導學生去接觸、了解、學習、應用人工智能技術,以適應未來學習和工作環境的變化。人工智能涉及的學科內容較為廣泛復雜,小學生相對年齡較小,儲備的相關知識較少,學校應如何在小學階段有效開展人工智能教學,推進人工智能教學真正落地?筆者結合自己的教學實踐,從“巧”借活動、“巧”設場景、“巧”編程序、“巧”創項目等方面,積極探索小學人工智能教學的推進路徑。
一、“巧”設場景體驗人工智能
人工智能的知識結構具有較強的邏輯性和抽象性,與之前信息技術課上所教的內容相比,難度及復雜性更高。在日常人工智能教學中,教師應根據學生的心理特點以及不同教學要求,改變教學方式,把體驗搬進課堂,讓學生通過具體的體驗活動逐步理解人工智能的相關知識,把重難點從對概念、原理、技術的學習轉換到了解相關概念、技術實現的過程、體驗人工智能技術的應用上。豐富有趣的教育實踐活動可以讓學生在愉悅的教學情境中,從不同的思維角度、用不同的思維方式來認識和理解與生活密切聯系的一些人工智能概念,如機器學習、大數據、神經網絡等,體驗人工智能在實際生活中的應用。例如在《人臉識別》一課教學中,需要讓學生了解人臉識別技術的應用、影響、實現過程和原理,其中人臉識別的原理和過程較為復雜,如果教學中只進行簡單說教,無法有效達成教學目標。本課設計了一個“人臉大比對”體驗活動,活動分兩個部分,第一部分就是通過百度AI開放平臺里的人臉檢測與屬性分析功能,體驗人臉檢測中具體檢測哪些屬性;第二部分就是通過人臉對比功能,完成教師提供的三組人像照片的對比分析。在第一部分的實例體驗中,學生通過自己上傳照片進行檢測,主要是通過對人臉的面部、膚色、毛發、眼睛、嘴、鼻和輪廓等150個特征的精準定位來準確地識別和計算出一張人臉的特征和屬性信息,包括年齡、性別、顏值、情緒、是否戴眼鏡等。這樣的體驗讓學生非常感興趣,也能很好地理解特征提取的過程。第二部分的體驗是人臉對比,教師提供給學生三組照片,第一組是一對相似度很高的雙胞胎;第二組是同一個人戴口罩和不戴口罩的照片;第三組是同一個人的兩種表情。學生先自己觀察,記錄三組照片的結果,再上傳照片到百度AI體驗人臉對比過程,并查看對比結果。經過體驗,學生認識到在現有的技術下,人臉識別的準確度還是非常高的,對人臉識別的過程也留下了非常深刻的印象。
二、“巧”編程序理解人工智能
從當前人工智能技術應用的實際情況分析來看,主要應用領域為大數據及機器學習,這些功能的實現得益于算法的不斷完善。可見,算法學習是實現人工智能的關鍵,而對算法的學習又是計算機編程教學中的一大難點。推進小學編程教學將有利于幫助學生理解人工智能的相關知識。小學生相對抽象思維偏弱,采用圖形化的編程教學,更加有利于他們接受,有助于提高學習的積極性。通過編程教學引導學生學會分析問題、抽象與建模、設計算法、編寫程序腳本,在驗證過程中不斷改進和完善,并最終實現問題的解決,能有效培養學生的計算思維,并過渡到對人工智能所需要的其他知識的學習上。例如在五年級的《創編游戲》教學中,情境任務是設計制作一個貓捉老鼠的小游戲,目標是讓學生認識“碰到顏色”“如果……那么……”等指令,能夠用它們的組合來編寫判斷角色是否碰到邊緣和老鼠的腳本。人工智能的概念主要體現在“碰到顏色”和“如果……那么……”語句的應用上,“碰到顏色”是偵測識別,“如果……那么……”則是邏輯判斷的處理。在教學中,首先通過問題引導學生思考完成游戲需要考慮哪幾個要素,從問題和答案中幫助學生提煉出“舞臺”“角色”“動作”三個要素,進而幫助學生厘清實現游戲功能的基本思路。在程序編寫中,讓學生具體體驗偵測模塊的編寫與判斷語句的應用。簡單的編程實踐,能讓學生逐步了解人工智能的基本概念及其實現流程。
三、“巧”創項目實現人工智能
知識的學習必須與學生的生活實際結合起來,如果學生在掌握人工智能知識和技能后能將所學知識應用于實踐,解決生活中的實際問題,那么這樣的學習就是真實有效的。學生通過設計創作具體作品,可以大大增強分析和處理問題、解決實際問題的意識和能力,培養邏輯思維和動手實踐能力,這也是人工智能教育的方向和目的。根據學生的實際生活經驗,教師將人工智能的具體應用案例巧妙引入課程中,引導他們科學地確定項目內容;通過對項目的梳理分析,建立邏輯關系和模型;用編程語言描述邏輯關系;采用硬件設備實現人工智能的具體功能,這種基于真實任務的學習活動,能有效促進學生的理解。例如四年級實踐小組的“智能垃圾桶”作品,便是以垃圾桶為課題進行探究,先讓學生對現有垃圾桶的優劣勢進行分析,思考怎樣改造垃圾桶才能真正實現智能化。通過教師的引領和自身觀察,學生很快認識到智能垃圾桶應該具有的功能:一是能檢測什么時候有人投放垃圾;二是垃圾桶蓋能自動開啟和關閉。確定了目標之后,就是思考達成上述目標需要哪些條件。學生根據已有知識,確定可以用超聲波檢測是否需要打開垃圾桶蓋子,打開和關閉動作可以通過舵機和連桿來實現。通過探究后,學生根據設計的方案自主完成了智能垃圾桶的作品搭建,接下來就是通過編寫程序和不斷調試驗證來實現預期的功能。作品完成后,學生可以根據實際情況進行功能的增加與修改,如增加桶內垃圾超過一定高度時能自動提醒的裝置等,讓智能垃圾桶更加智能。本次作品的創作過程,不僅鍛煉了學生分析實際問題、解決實際問題的能力,又鍛煉了他們的編程思維和計算思維,更重要的是體驗了自己創作人工智能作品的樂趣和成就感。在人工智能應用日益普及的今天,人工智能課程進入小學課堂是大勢所趨。在小學階段開展人工智能課程教學,主要是為了讓學生掌握人工智能知識,體驗和運用人工智能技術,培養學生的信息技術核心素養、創新意識、實踐應用能力,為學生適應未來社會打下扎實的基礎。但人工智能教學具有其特殊性,如何有效推進人工智能教學,還面臨著許多需要解決的問題。學校和教師應盡最大努力創設更好的人工智能教學環境,探索更有效的教學策略,促進學生對人工智能相關知識的學習。
參考文獻
[1]丁華.人工智能教學中對學生計算思維的培養[J].華夏教師,2020(13):42-43.
[2]徐欣彥.引入體驗活動創新小學人工智能教學模式[J].中小學信息技術教育,2019(9):62-64.
這是以張國榮在影視、電臺等留存下來的原聲建模,通過情感語音合成技術實現與粉絲“隔空對話”。據了解,任何一個人只要用30分鐘按照要求錄制50句話,就可以用百度大腦的語音合成技術模擬出這個人的聲音,這意味著,今后每個人都可以擁有自己的聲音模型。這是百度大腦所具備的基礎能力之一,從語音、圖像到自然語言理解再到用戶畫像……百度在這些領域的應用已經深入到人們的日常生活中。當這些能力賦予全社會的每個人,就能變換出無窮無盡的可能性,讓我們重塑對未來的想象。
人工智能的這種神奇魅力吸引了各大科技公司,谷歌、Facebook、IBM等國外科技巨頭紛紛通過成立人工智能實驗室、并購初創公司等方式,在人工智能領域進行多點布局。百度亦不例外,在人工智能方面的研發可謂不遺余力,更是第一個把人工智能提到核心技術創新地位的國內互聯網公司。
2015年底,百度挖來NEC美國智能圖像研究院的負責人林元慶擔任百度深度實驗室主任,由他帶領深度學習實驗室研發具有統治級別的人工智能技術。在本刊的專訪中,林元慶表示,“我覺得中國的互聯網節奏非??欤绕涫侨斯ぶ悄艿陌l展?,F在人工智能的剛需已經很明顯了,可以說非常旺盛,關鍵是如何把剛需挖掘出來,做出來,這才是重要的?!?/p>
百度大腦是百度人工智能的核心
《網絡傳播》:百度大腦目前有哪些階段性成果,其價值體現在哪里?
林元慶:百度大腦已建成超大規模的神經網絡,擁有萬億級的參數、千億樣本、億級特征訓練,能模擬人腦的工作機制。通過深度學習、大規模計算和大數據三大部分,百度大腦目前已經具備了語音、圖像、自然語言理解和用戶畫像四大前沿能力。以語音識別為例,目前百度語音識別的準確率能夠達到97%。在人工智能時代,百度大腦將是百度向社會輸出人工智能技術能力的核心,經過長期的投入與布局,未來百度大腦不僅將像百年以前的電力一樣成為商業新能源,更將深入到生活中,將電影中的場景變為現實。
《網絡傳播》:百度大腦宣布對廣大開發者、創業者及傳統企業開放其核心能力和底層技術開放,是出于何N考慮?
林元慶:百度大腦開放共享的思路,實際上是希望在時代變革大幕開啟之際,助力廣大合作伙伴全面共享人工智能時代,完成下一幕的轉型升級。百度大腦未來將與各行各業結合,衍生出不同領域的行業大腦,比如醫療大腦、交通大腦、金融大腦等。目前,百度大腦已經應用到教育、金融和娛樂等多個行業。
人工智能滲透百度所有產品線
《網絡傳播》:今年基本上全球各大互聯網公司都把人工智能作為最核心突破的領域,在這一領域,百度和其他公司的戰略方向有何不同?
林元慶:百度在人工智能領域起步早,布局領域廣,并且已經有很深的積累,既實現了對內業務的支持,也進行了大量對外技術的輸出。目前,百度的人工智能幾乎已經滲透到百度所有的產品線當中,以此改進百度全線產品的用戶體驗并提升用戶黏性。比如說手機百度的語音搜索、鳳巢的推廣系統以及百度外賣的調度系統、百度金融結合人工智能給用戶的畫像等等。接下來百度一方面將進一步提升各項人工智能技術,打造平臺化的對外輸出能力;另外一方面還將著力把這些人工智能技術和能力應用到具體行業和垂類中,提升行業的效率,促進行業變革。
《網絡傳播》:雖然業界普遍認可人工智能的巨大前景,但在目前來看,人工智能在短期內還很難看到盈利,那么,怎么看人工智能的普及和商業化?
林元慶:人工智能已經為百度的搜索業務提供了巨大幫助。人工智能的發展和普及有四大關鍵性的支柱――機器學習算法(特別是深度學習)、大數據、大規模計算,以及可供以上要素不斷訓練迭代的大應用。目前,人工智能在前三個領域都已經有了一定程度的突破,同樣關鍵的是人工智能技術的大規模應用,只有在制造業、醫療、汽車駕駛、娛樂等各個領域各個場景的不斷應用,才能形成“數據-技術-產品-用戶-更多數據-更強技術”這樣的一個正向循環。在這些不斷擴展的應用中,商業化也就是自然伴隨而來的事情了。
互聯網的下一幕是人工智能
《網絡傳播》:如何看人工智能在2016年的“爆發”?
林元慶:1956年夏天,“人工智能”首次被提出,但在之后的半個世紀都沒有能夠解決人工智能的問題。上世紀70年代到90年代,美國一直有人工智能的課程,但卻沒有實際的應用,在當時,任何一個領域都看不到有價值的人工智能應用。上世紀90年代以后,數據量越來越大,計算的能力也越來越強,機器學習逐漸興起;到2006年,深度學習的概念被提出,特別是在2010到2012年間,深度學習在語音識別和圖像識別領域取得了突破性進展。深度學習的成功極大地推動了人工智能的商業化。實際上,在2013年,《MIT科技評論》就已經把深度學習列為當年的十大技術突破之首,但今年確實是人工智能大規模商業化落地的一年。
《網絡傳播》:人工智能將會如何影響各行各業?
林元慶:影響最大的是制造業。當人工智能時代到來,制造業會徹底被物聯網改變。未來所有商品都能聯網,將數據傳回云端,通過人工智能技術進行分析,為消費者帶來實實在在的價值。汽車工業也將被人工智能徹底改變,盡管安全問題的解決路徑在傳統汽車廠商與創新廠家間有所不同,然而我們基本上還比較自信,有一天會進入來自動駕駛時代。此外,娛樂業及健康產業同樣也會被人工智能所改變。對于前者,虛擬現實與增強現實很可能會成為主流的內容形式,顛覆消費者對娛樂內容的消費方式;對于后者,通過基因分析、精準的醫療圖像診斷,患者的疾病將得到更加精準和個性化的治療。
關鍵詞:大數據 人工智能 技術
中圖分類號:TP18 文獻標識碼:A 文章編號:1674-098X(2017)01(a)-0001-02
隨著計算機技術被應用于社會生產、日常生活的方方面面,其重要作用日益體現出來,不可或缺。計算機從20世紀被發明,經歷了各種改革、調整與進步,到今天,計算機技術已經開始融入到人工智能的領域,開始代替人類本身做一些危險性、精密性高的工作。但是人工智能領域的發展并不僅僅是依靠計算機技術的進步,還有互聯網時代產生的大數據通過對各種程序化的技術的核算、設計以及發明所推動的人工智能的發展。技術的發展一直在不斷促進人工智能的發展,因為起初所有智能化都是在技術中發現和實現的。到當代,這種動力開始被大數據所替代,大數據開始挖掘技術推動人工智能繼續發展的潛力。
1 大數據挖掘技術推動人工智能繼續發展的機制
1.1 技術推動人工智能發展
如前所說,在最初幾乎所有的人工智能都是在生產的技術中發現、實現和發展的。勞動人民的智慧是無窮的,勞動人民創造的技術更是無盡的。從人類進化史中就可以看出,人類在工業革命后,從最初的利用蒸汽推動機車和及其的運轉,到后來利用燃料,通過內燃機來推動機器運轉,再到發明電機,再到現在通過電力實現了各種各樣人類憑借肉體無法完成的事情,比如在地質勘探、深海探測等方面。人類對于技術的不斷完善,推動著人工智能的不斷進步和發展。
1.2 大數據通過技術推動人工智能發展的機理
大數據指的是對于一定范圍內或者行業中,某一特定主體的某一方面或者多方面的特性、數量、屬性、問題、偏好、趨勢等內容的了解,基于眾多信息條目下的數據處理,最終可以從多方面系統化地了解某一事物。而人工智能指的是研究、開發用于模擬、延伸和擴展人的智能的理論、方法、技術及應用系統的一門新的技術科學。
根據人工智能的定義,我們可以看出,人工智能本身說到底是一門技術科學。在技術發展已經脫離以往的直接生產經驗,單是憑借大數據就可以進行推陳出新的今天,人工智能的發展動力已經在無形中被置換。大數據通過收集、分析技術參數,利用計算機系統對技術進行智能化改革,將人類從技術操作中剔除,完成人類本身完成不了的工作。
2 大數據挖掘技術推動人工智能繼續發展的現狀
大數據對于人工智能的發展,是通過技術的革新來實現的,但是這種技術的作用與實際的生產之間日漸存在張力,換句話說,大數據所促進的技術進步與革新,不但沒有被限制在傳統生產領域中,還在一定程度上超越了所有生產的閾值,更像是一種未來計劃。
美國的開源汽車制造商Local Motors曾推出過一款無人駕駛公交車Olli,車身采用3D打印技術制造,只需10 h就能打印出恚1 h內就可以組裝完畢。這輛車沒有司機,也沒有方向盤,全靠內置的超級計算機來發送指令,通過傳感器收集數據,再利用超級計算機進行實時路況分析。我們可以看到,無人汽車在實用性方面目前微乎其微,但是在未來,將徹底地改變人類出行方式,這就是當今大數據挖掘技術推動人工智能發展的路徑。
當然,在生產領域,利用大數據挖掘技術推動人工智能發展的成果更是顯著,Agrobot是一家在加州開設的西班牙公司,他們制造的商業機器人可以采摘草莓。在采摘過程中這種機器人只能識別足夠成熟的水果,機器本身是技術的極大進步,在識別成熟的草莓方面大數據起到了巨大作用。在智力領域中,隨著“阿爾法狗”這款圍棋人工智能程序在與人類對戰中爆發出優勢,人工智能引起了全世界的廣泛關注。而“阿爾法狗”之所以能戰勝人類,與其積累的大數據分不開。
總之,大數據通過挖掘技術的發展來促進人工智能的繼續發展,不僅是在科學實驗領域,也在我們日常的生產生活之中。
3 大數據挖掘技術推動人工智能繼續發展的方式
3.1 傳統技術領域中大數據推動的人工智能技術轉變
在傳統產業中,依靠人工以及簡單的機械來進行工作的領域也已經逐漸被大數據推動的人工智能技術所改變。具體而言,就是大數據滲透進產業的每一個角落中,分析傳統產業中耗時耗力的缺點,統籌整個產業或者地區性傳統產業的資源分配,協調各方的利益關系,最終以漸進的方式形成產業轉變。在我國,逐漸淘汰高耗能、低產出、重污染的企業,向著高興技術產業發展,就是利用大數據分析這些產業給地區或者行業帶來的利弊,最終決定如何轉變。
3.2 大數據創造人工智能技術的最前沿
這是個數據時代,人們的一舉一動都被數據所記錄,技術也一樣。技術的所有參數都被編制進大數據的網絡中,它開始“開疆拓土”,創造以往不存在的人工智能領域。在現代醫學領域、現代化農業領域、現代航空領域以及現代軍事領域等多個領域中,大數據指導下的技術性人工智能逐漸占據了科技的最前沿,成了社會性技術發展領域的風向標和指明燈。
4 結語
大數據通過置換傳統生產技術、理念來實現技術的不斷進步,隨著技術的不斷更新,將人類從危險、枯燥的工作中釋放出來,代替了人類引以為傲的智能,將社會生產、日常生活推向了一個更方便、更科學的時代,它開啟了人工智能的新時代。
參考文獻
[1] 鄒蕾,張先鋒.人工智能及其發展應用[J].信息網絡安全,2012(2):11-13.
關鍵詞: 游戲開發 人工智能 教學方法
1.背景
隨著互聯網時代的到來,人們的生活方式發生了許多重大的變革,其中之一便是網絡游戲的盛行。如同雨后春筍般冒出來的網吧,以及快速增長的PC,使得人們接觸到互聯網的機會越來越多,這就為網絡游戲的傳播與發展創造了可能。一方面,數量龐大的網民群體中,年輕人占了絕大部分,網絡游戲豐富了社會公眾的文化娛樂生活,深受廣大年輕人喜愛,這更促進了游戲產業的蓬勃發展。另一方面,現代社會生活節奏加快,人們壓力日益增大,許多人傾向于在網游中尋求安慰,釋放壓力,因而全球市場對于網游的需求有增無減。同時,隨著科技的發展和人們對游戲越來越高的要求,游戲逐漸向真實體驗、感覺、觸覺等人性化發展,讓玩家有身臨其境的感覺,在整個游戲過程中得到享受游戲的一種特別的快樂和放松。[1]
近年來3D影像和仿真科技的不斷發展,讓游戲開發人員得以創建出更吸引人、更令人沉迷其中的游戲環境。然而要做出更能令人流連忘返的游戲就得應用人工智能(AI)。AI的應用使游戲角色能夠任意走動、角色可以走進障礙物、能夠控制非玩家角色是否按照團隊運動等,同時,AI還能延長游戲的生命周期,讓游戲更加有趣和更具有挑戰性。
AI能夠處理游戲角色的追趕、躲避、聚集、避障和尋徑問題;AI給游戲角色賦予模糊邏輯和有限狀態機等基于基本規則的推理能力;AI腳本可以擴充AI引擎,讓設計者和玩家更好地設計和玩游戲,等等。因此,將AI應用在游戲開發中以設計實現游戲角色的各種行為勢在必行,有著重要的現實意義。
2.教學內容及其特點
本系人工智能課程的教學內容主要是處理追趕、躲避、聚集、攔截和避障等問題,使用經典A*算法及其改進算法解決尋路問題,以及有限狀態機,等等。本文主要針對游戲中游戲角色的尋路問題進行探討。游戲設計中游戲角色的尋路問題是設計的關鍵,傳統的方法是應用A*算法及其改進算法等來實現游戲角色的尋路問題,目前逐漸有學者應用神經網絡、遺傳算法、粒子群算法等智能算法來實現游戲角色的尋路問題。如:迷宮尋路游戲中《幫助Bob找到回家的路》應用遺傳算法,《智能采礦》游戲中應用神經網絡,用粒子群實現坦克大戰游戲,等等。嘗試應用魚群算法、螢火蟲算法等智能算法求解游戲角色的尋路問題中,以實現游戲的更加智能化、人性化,同時,新的仿生算法的學習和應用能吸引學生的學習注意力、增強學生的學習興趣。
智能算法是解決智能計算問題的方法,已成為人工智能界一個研究的熱點領域,研究的最終目標就是為了讓計算機和集成有計算功能的各種工具及設備更加獨立、更加聰明,能夠自主思考和行動,最終成為我們工作和生活中必不可少的一部分。智能算法主要包括:人工神經網絡、進化算法、人工免疫算法、模擬退火算法、蟻群算法、粒子群算法、蜂群算法、人工魚群算法、人口遷移算法、人工螢火蟲算法等。[2]智能算法是一類仿生算法,就是向自然界學習,采用類比的方法,通過模仿自然界中動物飛行、覓食、求偶等行為以得到解決問題的一般方法,如蟻群、粒子群、蜂群、魚群、螢火蟲算法等。此外,還有很多智能算法通過模仿一些自然或物理現象和規律,如模擬退火算法通過模擬液體的結晶過程設計,免疫算法是模擬生物、植物或動物免疫系統自適應調節功能設計的,人工神經網絡是模擬人的大腦結構及信號處理過程而設計的,進化算法是基于達爾文的“優勝劣汰、適者生存”原理設計的。[3]
針對本系人工智能課程的教學內容,建議補充人工智能中幾種簡單的智能算法的知識點,選取相關人工智能教材的一些內容結合智能算法進行教學。
3.教學方法
針對人工智能課程內容,根據高校教育規律、高校學生學習的特點,采用教學、實踐相結合的教學方法,大小課結合,大課講授理論知識,小課進行課堂實驗,小課的課堂實驗中嚴格要求學生親手編寫代碼,應用大課所學理論知識完成簡單小游戲以實現理論和實踐知識的掌握。同時,借助游戲系的優勢,制作動漫,采用動漫技術來實現人工智能中各種算法的仿生機制,讓學生深刻體會每一種算法的原理和仿生機制,這樣能增強學生學習人工智能課程的興趣,可以取得更好的教學效果。
4.教學效果評價方法
人工智能這門課,最重要的是注重學生對人工智能理論及在游戲中應用的知識和能力的培養。因此,本課程學習結束后主要采用以下方式進行考查:(1)閉卷考試。主要考查對人工智能理論的理解、掌握和綜合運用能力。(2)課堂練習。要求對課堂上介紹過的算法理解、分析、應用,編程實現游戲中的某個功能,最終課程結束時能完成一個功能完整的小游戲。(3)大作業。檢查學生的動手編程能力,要求從介紹過的算法中找一種算法實現一個小游戲中游戲角色的移動、尋路等行為,形成一個演示游戲。該門課成績分配如下:成績=閉卷考試(70%)+課堂練習(10%)+大作業(20%)。
5.結語
人工智能是隨著計算機技術的飛速發展和人們對自然界的深入理解而發展起來的,人工智能的應用逐漸廣泛。游戲開發中人工智能的應用實現了游戲逐漸向真實體驗、感覺、觸覺等人性化發展,讓玩家有身臨其境的感覺。因此,在網絡游戲相關專業開設人工智能課程勢在必行,有著重要的現實意義。
參考文獻:
[1]周樂.韓國游戲產業概況..