前言:一篇好文章的誕生,需要你不斷地搜集資料、整理思路,本站小編為你收集了豐富的硬件系統設計論文主題范文,僅供參考,歡迎閱讀并收藏。
關鍵詞:變壓器;冷卻控制系統;硬件
1變壓器冷卻控制系統控制模塊的設計總體思想
本文所進行的就是對變壓器冷卻控制系統控制器模塊進行設計,其中包括了可以對主變壓器風扇投入與切除的溫度范圍進行自行設定,也可以按照用戶的要求而變化。在傳統控制方式中,風扇投切的溫度限制值是不能改變的,此外,風扇電機的啟動和停止溫度有一余量,不像傳統的控制方式中是一個定值,避免了頻繁啟動的缺陷,此外還有運行、故障保護及報警等信號的顯示及其與控制中心或調度中心的通訊,上傳這些信息,如變壓器油溫、風扇運行狀態有無故障等。至于風扇的分組投切設置是為了節約電能,具有一定的經濟意義,但這個分組數不宜過多,以免控制復雜,且散熱效果不佳。
控制器主要由AT89CS1單片機、A/D轉換器、鍵盤控制芯片,輸出模塊、通訊模塊以及自動復位電路等組成,其中單片機是控制器的核心,AID轉換器是把輸入信號轉換為數字信號。
2變壓器風扇控制系統的硬件接線
基于以上的要求,我們設計的風扇控制器的硬件線路圖如下頁圖1所示。變壓器風扇控制中對控制模塊進行改進是本文研究的重點,其中包括主要芯片的選用以及一些抗干擾元件的使用。所以在本章節中,我們重點將要介紹變壓器風扇冷卻控制模塊中的主要硬件芯片的作用、選用以及它們之間的連接力一法。
(1)單片機AT89C51(如圖1)。
AT89C51是Atmel公司生產的一種低功耗,高性能的8位單片機,具有8k的flash可編程只讀存儲器,它采用Atmel公司的高密度不易丟失的存儲器技術,并且和工業標準的80c51和80c52的指令集合插腳引線兼容,其集成的flash允許可編程存儲器可以在系統或者通用的非易失性的存儲器編程中進行重新編程。AT89C51集成了一個8位的CPU,8K的flash。256字節的EDAM,32位的I/0總線。三個16字節的定時器/計數器,兩級六中段結構,一個全雙工的串行口,振蕩器及時鐘電路。AT89C51是完成系統的數據處理和系統控制的核心,所有其它器件都受其控制或為其服務。
在本文中,經過TLC1543A/D轉換器后輸出的數字量輸入到AT89C51單片機中,同時在進行了溫度參數的設置以后,進行它的輸出控制,其中包括了變壓器的溫度顯示、狀態顯示、以及聲音報警設備等等,也就是我們所研究的變壓器冷卻控制系統的核心部分。
(2)變壓器的溫度采集及溫度處理模塊。在變壓器的風扇冷卻自動控制系統中,第一步進行的就是對變壓器上層油溫進行的溫度采集工作。變壓器的溫度采集是由變壓器的溫度控制器來實現的,其中包括鉑電極、傳感器以及變送器。經過溫度控制器輸出的信號進入變送器,變送器送出一個4一20毫安的電流信號,然后將此電流信號通過控制芯片上的電阻元件實現電流電壓信號的轉換,轉換后的電壓是在0.4一2(伏特)之間,然后將此電壓信號輸入到TLC1543數模轉換器,進行信號處理。變送器輸出信號有電流和電壓信號兩種,考慮到變壓器安裝的位置(室外)距本控制裝置(室內)有一定的距離,電流信號不易損失,故選擇了4一20毫安的電流信號。(3)11通道10位串行A/D轉換器丁LC1543。
TLC1543A/D轉換器是美國TI公司生產的眾多串行A/D轉換器中的一種,它具有輸入通道多、轉換精度高、傳輸速度快、使用靈活和價格低廉等優點,是一種高性價的模數轉換器。TLC1543是CMOS,10位開關電容逐次逼近模數轉換器。它有三個輸入端和一個3態輸出端:片選(CS),輸入/輸出時鐘(I/0CLOCK),地址輸入和數據輸出(DATAOUT)。這樣通過一個直接的四線接口與卞處理器或的串行口通訊。片內還有14通道多路選擇器可以選擇11個輸入中的任何一個三個內部自測試(self-test)電壓中的一個。
(4)BC7281128段LED顯示及64鍵鍵盤控制芯片。
BC7281是16位LED數碼管顯示器鍵盤接口專用控制芯片,通過外接移位寄存器(典型芯片如74HC164,74LS595等),最多可以控制16位數碼管顯示或128支獨立的LED。BC7281的驅動輸出極性及輸出時序均為軟件可控,從而可以和各種外部電路配合,適用于任何尺寸的數碼管。
BC7281各位可獨立按不同的譯碼方式譯碼或不譯碼顯示,譯碼方式顯示時小數點不受譯碼影響,使用方便;BC7281內部還有一閃爍速度控制寄存器,使用者可隨時改變閃爍速度。
BC7281芯片可以連接最多64鍵C8*8)的鍵盤矩陣,內部具有去抖動功能。它的鍵盤具有兩種工作模式,BC7281內部共有26個寄存器,包括16個顯示寄存器和10個特殊(控制)寄存器,所有的操作均通過對這26個寄存器的訪問完成。
BC7281采用高速二線接口與MCU進行通訊,只占用很少的I/O資源和主機時間。
BC7281在本系統中主要用于驅動變壓器溫度顯示的LED以及顯示風扇運行狀態的指示燈。
前已提及,BC7281芯片內部共有26個寄存器,包括16個顯示寄存器和10個特殊功能寄存器,共用一段連續的地址,其地址范圍是OOH-19H,其中OOH-OFH為顯示寄存器,其余為特殊寄存器。
(5)使用MAX232實現與PC機的通訊。
①MAX232芯片簡介
MAX232芯片是1VIAX工M公司生產的低功耗、單電源雙RS232發送/接收器,適用于各種E工A-232E和V.28;V.24的通信接口,1VIAX232芯片內部有一個電源電壓變換器,可以把輸入的+5V電源變換成RS-2320輸出電平所需±10V電壓,所以采用此芯片接口的串行通信系統只要單一的+5V電源就可以。
我們的設計電路中選用其中一路發送/接收,RlOUT接MCS一51的RXD,T1工N接MCS一51的TXD,TlOUT接PC機的RD,Rl工N接PC機的TD1。因為MAX232具有驅動能力,所以不需要外加驅動電路。
系統中使用了此技術之后就實現了變壓器風扇冷卻系統的遠程控制,工作人員可以在控制室對冷卻系統進行控制,可以達到方便、準確、快捷的日的,這也是我們對傳統的風扇冷卻控制系統而做的一個重要的改進。
②串行通訊
在此實現中,我們必須要對MCS-51串行接日和PC機串行接日的串行通訊要有一定的了解,串行通信是指通信的發送方和接收方之間數據信息的傳輸是在單根數據線上,以每次一個二進制位移動的,它的優點是只需一對傳輸線進行傳送信息,囚此其成本低,適用于遠即離通信;它的缺點是傳送速度低;串行通信有異步通信和同步通信兩種基本通信方一式,同步通信適用于傳送速度高的情況,其硬件復雜;而異步通信應用于傳送速度在50到19200波特之間,是比較常用的傳送方式,本文中使用的就是異步通訊方式。
(6)“看門狗”電路DS1232
在系統運行的過程中,為了避免因干擾或其他意外出現的運行中的死機的情況,“看門狗電路”DS1232會自動進行復位,并且能夠重讀EEPROM中的設置,以保證系統可以安全正常的運行。
美國Dallas公司生產的“看門狗”(WATCHDOG)集成電路DS1232具有性能可靠、使用簡單、價格低廉的特點,應用在單片機產品中能夠很好的提高硬件的抗干擾能力。
DS1232具有以下特點:
①具有8腳DIP封裝和16腳SOIC貼片封裝兩種形式,可以滿足不同設計要求;
②在微處理器失控狀態卜可以停止和重新啟動微處理器;
③微處理器掉電或電源電壓瞬變時可自動復位微處理器;
④精確的5%或10%電源供電監視;
在本變壓器冷卻控制系統中,DS1232作為一定時器來起到自動復位的作用,在DS1232內部集成有看門狗定時器,當DS1232的ST端在設置的周期時間內沒有有效信號到來時,DS1232的RSR端將產生復位信號以強迫微處理器復位。這一功能對于防止由于干擾等原因造成的微處理器死機是非常有效的,因為看門狗定時器的定時時間由DS1232的TD引腳確定,在本設計中,我們將其TD引腳與地相接,所以定時時間一般取為150ms。
3結論
本裝置實現了通過單片機自動控制冷卻器的各種運行狀態并能精確監測變壓器的油溫和冷卻器的各種運行、故障狀態,顯示了比傳統的控制模式的優越性。(1)能夠對變壓器油溫進行監測與控制;(2)實現了變壓器冷卻器依據不同油溫的分組投切,延長了冷卻器的使用壽命,有較好的經濟意義;(3)實現了冷卻系統的各種狀況,如油溫、風扇投切和故障等信息的上傳,便于值班員、調度員隨時掌握情況。
由于固態繼電器實現了變壓器的無觸點控制,解決了傳統的控制回路的弊端,同時此控制裝置具有電機回路斷相與過載的保護功能。由于使用了單片機,因而具有一定的智能特征,實現了油溫、風扇的投入、退出和故障等信號的顯示以及上傳等。通過實際運行表明,該裝置的研制是比較成功的。但今后,我們還應該對固態繼電器本身的保護進行一些研究,以免主回路因電流過大而造成固態繼電器的損壞,以使變壓器風扇冷卻控制回路更加完善。
參考文獻
【關鍵詞】AGV 磁引導 PWM調速 8052單片機
隨著現代科學技術的高速發展,自動導引小車(Automatic Guided Vehicle AGV)得到了廣泛的應用。AGV以電池為動力,并裝有非接觸導航(導引)裝置,以電磁引導、激光引導、慣性引導及GPS引導等方式。可實現無人駕駛的運輸作業。它能在計算機監控下,按路徑規劃和作業要求,精確地行走并停靠到指定地點,完成一系列作業。
AGV以輪式移動為特征,較之步行、爬行或其它非輪式的移動機器人具有行動快捷、工作效率高、結構簡單、可控性強、安全性好等優勢。AGV的活動區域無需鋪設軌道、支座架等固定裝置,不受場地、道路和空間的限制。在自動化物流系統中,最能充分地體現其自動性和柔性,實現高效、經濟、靈活的無人化生產。
一、AGV導航系統的系統總體設計
本論文設計了磁帶引導AGV,完成尋跡、蔽障、PWM調速、人工控制等功能,為大量生產工業型AGV提供較好的研究基礎。系統模塊設計如圖1所示:
圖1
本論文主要對AGV的硬件系統進行設計,重點研究磁引導AGV的磁尋跡感器模塊軟硬件模塊、速度反饋模塊的設計。
二、磁尋跡傳感模塊設計
磁尋跡傳感器是AGV能否完成磁帶尋跡功能的關鍵,為了檢測到弱磁磁場的存在,要選用靈敏度更高的傳感器。本設計采用磁阻傳感器,可以測量到弱磁磁場的存在。由于磁阻傳感器輸出為模擬量輸出,需要通過響應的A/D轉換電路將信號輸入單片機。模塊設計如圖2所示。
圖2 磁尋跡傳感器硬件實現電路
三、速度反饋模塊設計
本論文AGV采用雙輪差速驅動方式,當電機負載增加時,電機的運行速度下降,一般額定轉速降落達3%~10%,為了使兩電機同速,必須要有反饋換環節對電機的速度進行反饋。只有組成了閉環系統,AGV的運動與速度才可控。碼盤接口硬件電路如圖3所示。兩編碼器的A和B兩相信號經過74LS14施密特整形,分別接到單片機的P2.3和P2.2 以及INT0和INT1上。單片機對INT1和INT0的中斷次數計數來測量通道B的脈沖數,讀取P1.2的電平狀態來判斷電機的轉動方向。以上升沿觸發為例,當B路信號的上升沿引起中斷時,單片機判斷P2.2或P2.3信號的電平高低。若其為低,則電機正傳;為高,則電機反轉。電機的速度即為一個采樣周期中N值的變化量。電機的轉速為,式中,C為標度變化系數,可根據轉速的量綱來選擇,N為一個采樣周期中的計數值,它的符號反應電機的轉動方向。硬件實現電路如圖3所示。
圖3 光電編碼器實現電路圖
四、總結
本系統采用PWM調速及雙輪差速控制,使車輛依照車載傳感器確定的位置信息,沿著規定的行駛路線和停靠位置,自動行駛,完成規定的操作。論文對關鍵模塊的設計進行了詳細設計,經驗證該系統設計可靠合理,能實現系統設計的基本功能。
參考文獻:
[1] 溫鋼云,黃道平. 計算機控制技術[M]. 華南理工大學出版社,2002.
[2] hard C.Dorf Robert H.Bishop. 現代控制系統[M].高等教育出版社,2006.
關鍵詞:虛擬儀器;微機保護;實驗系統
中圖分類號:TP391文獻標識碼:A文章編號:1009-3044(2010)19-5381-02
繼電保護裝置是一種利用電磁感應原理而發展起來的電力系統保護裝置,隨著電子技術和網絡通信技術的飛速發展,目前已經發展到微機型階段,并且利用軟件技術可以實現由軟件技術驅動硬件而實現微機繼電保護,這就是目前研究很熱的技術――基于虛擬儀器技術的繼電保護系統。利用虛擬儀器技術實現的微機繼電保護裝置,具有傳統微機繼電保護裝置所不具備的優勢,例如控制更加安全可靠等。
本論文主要將虛擬技術應用于微機保護實驗系統,擬對基于虛擬儀器技術的微機保護系統進行開發,并從中找到可靠有效的微機保護實驗方法與建議,并和廣大同行分享。
1 微機繼電保護概述
1.1 微機繼電保護的基本構成
微機繼電保護裝置,其基本結構構成與普通的電力保護裝置一樣,也是有硬件和軟件兩大部分構成。硬件部分主要由數據采集系統、數據處理系統及邏輯判斷控制模塊等幾個部分構成,主要由數據采集模塊負責對電力系統的相關電參數實現檢測與采集,并將數據傳送至數據處理系統,數據經過運算之后,由邏輯判斷控制模塊調用軟件控制程序,并發出相應的控制信號,驅動保護裝置執行保護動作,從而實現電力繼電保護的功能。
隨著集成電子電路技術的發展,目前發展的微機型繼電保護裝置,其硬件系統主要由CPU(微處理器)主機系統、模擬量數據采集系統和開關量輸入/輸出系統三大部分組成,盡管結構構成已經發生一定變化,但其實實現繼電保護的基本原理仍是一樣的,由模擬量數據采集系統負責相關保護參數的采集,微機繼電保護裝置是以微處理器為核心,根據數據采集系統所采集到的電力系統的實時狀態數據,按照給定算法來檢測電力系統是否發生故障以及故障性質、范圍等,并由此做出是否需要跳閘或報警等判斷。
1.2 微機繼電保護裝置的特點
微機保護與常規保護相比具有以下優點:
1) 微機繼電保護裝置主要由微處理器為核心而構成的硬件系統,因此借助于現代功能強大的微處理器,微機型繼電保護裝置可以實現一定程度的智能化。
2) 相比于傳統的機械式硬件實現的硬件保護裝置,微機型繼電保護裝置能夠依靠數據采集模塊實現對相關參數的檢測與采集,整個過程實現數字化流程,這就為繼電保護裝置的控制功能的穩定性、可靠性提供了技術條件;另一方面,依靠微處理器內部的軟件程序,微機繼電保護裝置能夠進行周期性自檢,一旦發現自身硬件或者軟件發生故障,能夠立即實施報警,從而保障了繼電保護裝置功能的可靠性。
3) 傳統的機械式硬件實現的硬件保護裝置,其保護功能較為單一,僅僅是實現基本的保護功能,動作依靠一次性機械元件完成,一旦該部件發生故障,則整個繼電保護裝置無法工作;而微機型繼電保護裝置除了能夠利用弱電驅動控制實現繼電保護的功能外,還能夠依靠數據采集系統對整個電力系統的相關電力參數都實施監測與采集,通過程序的分析,實現對電力系統整體性能的檢測,保護功能大大豐富。
4) 傳統的機械式硬件實現的硬件保護裝置,其功能調試復雜,工作量大,而且極容易造成內部晶體管集成電路的失效,而現代微機繼電保護裝置,依靠內部的核心微處理器,能夠開發專用的人機交互系統,利用人機交互系統實現繼電保護裝置的調試,簡單易行,還可以自動對保護的功能進行快速檢查。
5) 利用微機的智能特點,可以采用一些新原理,解決一些常規保護難以解決的問題。例如,采用模糊識別原理或波形對稱原理識別判斷勵磁涌流,利用模糊識別原理判斷振蕩過程中的短路故障,采用自適應原理改善保護的性能等。
2 基于虛擬儀器的微機保護實驗系統開發設計
2.1 總體結構設計
本論文探討的是基于虛擬儀器技術的微機繼電保護系統,因此首先面臨選擇合適的虛擬儀器開發平臺的問題,這里選擇基于G語言的LabView開發平臺是目前國際最先進的虛擬儀器控制軟件,集中了對數據的采集、分析、處理、表達,各種總線接口、VXI儀器、GPIB及串口儀器驅動程序的編制。基于虛擬儀器的微機繼電保護裝置系統,是利用虛擬儀器開發平臺,構建虛擬的微機繼電保護裝置,實現完整的微機繼電保護裝置的全部功能,并對設計的虛擬繼電保護裝置進行評估和改進,從而完成微機繼電保護系統設計的一種設計手段。
利用虛擬儀器技術進行微機繼電保護系統的開發設計,從具體設計流程來說,主要從以下幾個環節入手進行總體結構的設計:
根據微機繼電保護系統的設計目標、設計功能,列出所需要的相關硬件,構建整體微機繼電保護系統結構框架;另一方面,盡量采用模塊化的開發設計模式,將微機繼電保護系統按照不同的功能環節,設計各功能模塊之間的結構關系。
如下圖所示,是本論文所探討的利用虛擬儀器平臺所開發的微機繼電保護系統結構原理圖。這種方式既便于模塊的單獨調試,節省系統開發周期,又便于系統功能的改變,使系統具有更強的移植與升級功能。
如圖1所示,基于虛擬儀器技術的微機保護系統結構主要由一次系統、轉換模塊、數據采集模塊、保護測量模塊及保護決策軟件系統等幾部分構成,一次系統主要負責面向電網系統模擬設置合適的傳感器,將相關擬生成電網的二次側電壓、電流信號,信號經過轉換、調理電路變換成符合要求的-5V~+5V模擬信號送數據采集模塊,數據采集模塊主要由DAQ數據采集卡構成,能夠自動將模擬產生的模擬電壓信號進行A/D轉換,并進行初步的數據處理轉換再傳送給以虛擬微處理器為核心的保護決策模塊,最終將生成的繼電保護控制決策信號輸出到保護策略模塊,最終實現微機繼電保護系統的功能。
2.2 數據采集模塊的設計與實現
本文中微機實現的繼電保護實驗系統輸入信號來源于繼電保護測試儀,根據保護系統測試輸入信號的特點,本論文采用數據采集卡來負責數據的采集與高速傳輸。
2.2.1 數據采集卡的選擇
要實現基于虛擬儀器技術平臺的微機繼電保護系統,一次系統在完成相應電力系統電參數的傳感檢測之后,數據采集模塊要能夠按照微機繼電保護系統的功能于設計要求實現相應數據的轉換與采集,因此,數據采集卡的選擇成為整個微機繼電保護系統保護功能實現的關鍵。目前的數據采集卡,主要有12位或16位的DAQ數據采集卡,在具體決定選用12位還是16位的DAQ設備時,主要從采集精度和分辨率這兩個指標考慮,可以由給定的系統精度指標衡量出DAQ卡需要的整體精度。
在本論文中,這里選取PCI-1716數據采集卡。PCI-1716是研華公司的一款功能強大的高分辨率多功能PCI數據采集卡,它帶有一個250KS/s16位A/D轉換器,1K用于A/D的采樣FIFO緩沖器。PCI-1716可以提供16路單端模擬量輸入或8路差分模擬量輸入,也可以組合輸入。它帶有2個16位D/A輸出通道,16路數字量輸入/輸出通道和1個10MHz16位計數器通道。PCI-1716系列能夠為不同用戶提供專門的功能。
2.2.2 虛擬數據采集程序的實現
在選擇了數據采集卡硬件設備之后,需要借助于虛擬儀器平臺為整個系統設計虛擬護具采集程序。在具體進行設計時,由系統內部虛擬程序產生數據采集卡鎖需要的相應信號,具體來說就是CT、PT信號,因此,在具體編程時,首先將CT、PT信號傳輸至相應的濾波器,LabVIEW提供了各種典型的濾波器模塊,根據需要可以設置成低通、高通、帶通、帶阻等類型的濾波器;其次,將經過數據濾波處理之后的數據進行輸出。數據采集模塊的程序如圖2所示。
2.3 微機保護模塊的設計與實現
既然在數據采集模塊之后需要進行數據的濾波,盡管LabVIEW提供了各種典型的濾波器模塊,但是仍然需要借助于虛擬濾波模塊設計專用的濾波算法,而且在微機繼電保護系統中,對電力系統的繼電保護功能的實現,主要是由相應的濾波保護算法實現的,因此有必要為虛擬微機電力保護系統設計濾波保護算法程序。
本論文采用如下的設計方法對濾波保護算法進行設計:
1) 利用LabVIEW自帶的濾波器進行數據的排序濾波。
2) 按照系統保護功能所需要的數據頻帶,設置相應的低通、高通、帶通、帶阻等燈濾波保護功能。按照上述方法,基于虛擬儀器平臺的微機繼電保護系統,其濾波器輸入得到的數據序列,多數是傳感器采集到的電參數,如電壓和電流,而電壓和電流數據是離散的數字量序列,其中包含了大量的諧波干擾信號,因此有必要進行濾波。在本論文中,采用了二級濾波保護算法,即分別進行前置濾波和后置濾波,實現對數據的二級濾波保護,從而提高整個微機繼電保護系統的穩定性和可靠性。前置濾波模塊如圖3所示,后置濾波模塊如圖4所示。其中前置濾波模塊提供了差分濾波器、積分濾波器、級聯濾波器、半波和1/4周波傅立葉濾波器、半波和1/4周波沃爾氏濾波器,可以根據需要自行選擇;后置濾波模塊提供了平均值濾波器、中間值濾波器,也可以自由選擇。
3 結束語
利用虛擬儀器技術進行微機繼電保護裝置系統的設計開發,能夠很好的避免了實物硬件開發設計所帶來的周期較長、調試較復雜以及成本較高等劣勢,所有的開發設計任務全部在虛擬儀器平臺上完成。本論文將虛擬儀器技術應用到了微機保護裝置的設計,對于進一步提高微機繼電保護裝置的可靠性與穩定性具有優勢,同時借助于虛擬儀器技術的開發,能夠更好的實現電氣繼電保護功能的完善與提升。
參考文獻:
[1] 李佑光,林東.電力系統繼電保護原理及新技術[M].北京:科學出版社,2003.
[2] 王亮,趙文東.微機繼電保護的現狀及其發展趨勢[J].科技情報開發與經濟,2006,16(18):150-151.
[3] 張振華,許振宇,張月品.第三代微機保護的設計思想[J].電力自動化設備,1997,17(3):24-25.
引言
不論社會經濟如何飛速,對于電機的控制在人們正常生活和生產中起著重要的作用。一旦缺少了電機的控制,輕則給人民生活帶來極大的不便,重則可能造成嚴重的生產事故及損失,從而對電機控制系統提出了更高的要求,需要滿足及時、準確、安全等特性。如果仍然使用人工方式,勞動強度大,工作效率低,安全性難以保障,由此必須進行自動化控制系統的改造。
目前的單片機廣泛的應用在很多的場合,在以下的民用電子產品、計算機系統、智能儀表、工業控制、網絡與通信的智能接口、軍工領域、辦公自動化等領域有廣泛的應用。本次的電機控制系統設計使用單片機控制電路實現對電機的控制。
本文采用AT89C51單片機作為硬件核心實現對電機進行控制,通過采集電路采集電機的速度信息,并與設定的速度進行比較,產生偏差信號,偏差信號通過PID調節器調節電機轉速,保證電機的恒轉速運行。
AT89C51單片機溫度測控儀采用Atmel公司的AT89C51單片機,采用雙列直插封裝(DIP),有40個引腳。該單片機采用Atmel公司的高密度非易失性存儲技術制造,與美國Intel公司生產的MCS—51系列單片機的指令和引腳設置兼容。其主要特征如下:8位CPU;內置4K字節可重復編程Flash,可重復擦寫1000次;完全靜態操作:0Hz~24Hz,可輸出時鐘信號;三級加密程序存儲器;128B×8的片內數據存儲器(RAM);32根可編程I/O線;2個16位定時/計數器;中斷系統有6個中斷源,可編為兩個優先級;一個全雙工可編程串行通道;可編程串行UART通道;具有兩種節能模式:閑置模式和掉電模式。
1電機控制系統的硬件設計
對于電機的整流電路在實際的應用過程中已經非常成熟,因此可以參考相關的電機設計資料,在本論文中就不做相應的贅述。
1.1功率驅動模塊
功率驅動模塊是電機控制系統的一個重要組成部分,在本文的電機控制系統中,采用的是IR公司的IRAMS10UP60A,這款集成電路具有硬件電路簡單,并且穩定性和安全性、可靠性高等特點。在這款電路中具有自舉電路和過溫過流保護,這樣能夠保證閉環速度控制系統的功能。
1.2檢測電路
在本篇論文中采用的是無刷直流電機自帶的霍爾元件式的位置傳感器,霍爾元件是一種基于霍爾效應的磁傳感器。用它們可以檢測磁場及其變化,可在各種與磁場有關的場合中使用。霍爾元件具有許多優點,它們的結構牢固,體積小,重量輕,壽命長,安裝方便,功耗小,頻率高(可達1MHZ),耐震動,不怕灰塵、油污、水汽及鹽霧等的污染或腐蝕。霍爾線性器件的精度高、線性度好;霍爾開關器件無觸點、無磨損、輸出波形清晰、無抖動、無回跳、位置重復精度高(可達μm級)。采用了各種補償和保護措施的霍爾器件的工作溫度范圍寬,可達-55℃~150℃。
通過遮光盤的齒部的遮擋與不遮擋,使霍爾元件產生高、低電平信號,從而提供了電動機的轉子位置信息。當電機轉軸逆時針轉動時,遮光盤的齒部進入霍爾傳感器定子內,此時由于永磁塊的磁力線被齒部所短路,磁力線不穿越霍爾元件,霍爾元件輸出為“1”(高電平);當齒部離開時,磁力線穿越霍爾元件,霍爾元件輸出為“0”(低電平),這樣,根據這三個霍爾元件的輸出狀態,就可以準確地確定轉子的磁極位置。
1.3電流采樣設計
2電機控制系統軟件設計
3結論
隨著性能高的微處理器的出現,采用高性能的處理器可以簡化系統的設計,同時還能夠提高系統的安全性、可靠性。根據這種方法設計的電機控制系統與傳統的電機控制系統相比較在成本上具有很大的優勢。本文利用ATMEL公司的AT89C51的單片機,設計出了相應的硬件和軟件系統,在系統的軟件設計中,采用了模塊化的設計思想,并給出了相應的設計流程,這種芯片式的電機控制系統設計,簡化了設計的時間,降低了開發成本,能夠很好的實現系統的功能。
參考文獻:
[1]白雷石,楊華.基于DSP的無刷直流電動機控制系統[J].電氣傳動自動化,2012(2).
【關鍵詞】控制系統;PLC;溫室
農業從古至今一直是我國經濟基礎,在國家發展中占有重要的地位。隨著人們生活水平的提高,人們對農作物的生命期、品種都有了更高的要求,如四季能吃到綠色菜以及買到想要品種的鮮花。因此溫室現在越建越多,建溫室的重要保證參數就是植物的生長要素,即光、溫度、濕度和CO2,本論文就是論述如何用PLC技術對溫室進行控制。
一、確定控制系統方案
(一)控制對象
1.溫度
植物生長的溫度是在一個范圍內,雖然最適宜溫度植物長得很快,但是往往因為消耗有機物太多,會出現長的細長現象。控制系統的控制溫度范圍要略低于植物最適宜溫度。
2.濕度
空氣的濕度太大會造成之無病蟲害,但是要保證空氣濕度低的同時要有充足的水分由土壤供給植物。
3.光照
植物生長需要光照,這樣才能進行光合作用,不同植物的光補償點不同,因此事宜溫度范圍也不同,同時人們可以控制光照時間和強度來控制植物的生長速度。
4.CO2
植物生長需要光合作用,光合作用需要的一個物質是CO2,植物的光合作用隨著CO2的濃度增大而增強,但是濃度過高反而會抑制植物光合作用,因此二氧化碳濃度的控制范圍要與農作物相適應。
(二)PLC控制系統
PLC是可編程邏輯控制器,它可以通過編程方式完成傳統的繼電器-接觸器的邏輯控制,PLC的控制系統性能穩定,價格便宜,開發容易,性價比高,缺點就是人機交流困難。
(三)控制系統的方案確定
本控制系統方案為各參數的自動控制,當傳感器檢測的溫濕度、光照以及CO2超過范圍時,PLC控制系統會發出指令,控制執行機構如天窗的電動機等動作,使溫室參數達到用戶要求。
二、控制系統軟硬件設計
(一)控制要求
隨時檢測控制對象溫濕度、CO2濃度和光照參數,并保證參數在控制范圍內。控制系統設計流程如圖1所示。
(二)硬件設計
1.根據控制系統輸入輸出的點數,對PLC型號進行選擇
(1)PLC開關量點數確定
(2)根據PLC開關量點數確定PLC型號
由上表可得輸出點13個,輸入點14個,考慮到應有輸入輸出端子的余量,選擇S7-200cpu226型,其有24/16個I/O口。
2.模擬量模塊的選型
對于溫濕度、CO2和光強傳感器都輸出模擬信號,需要PLC擴展模擬量模塊。溫濕度傳感器分別要在溫室的上下南北四處檢測,因此輸入10路模擬量信號,因此選擇EM235模塊3個(此模塊4AI/1AO)。
3.溫濕度、光照以及CO2檢測元件選型
選擇HMD40溫度傳感器,Poi88-c光強傳感器,TGS4160型CO2傳感器以及A1203型濕度傳感器。
4.進行電路設計
控制電路簡圖如圖2所示,主電路同傳統繼電器-接觸器電路。
(三)軟件設計
以光照的控制為例,比較光照傳感器的值,如果超過上限,則打開遮光簾,如果在范圍內,則遮光裝備動作不變,低于下限值收起遮光裝備并且打開光照燈。
最后,要進行整機調試。調試時先啟動控制電路,斷開主電路,等確定程序和控制電路無誤后,在進行整機調試。
參考文獻
高校教師論文及著作管理系統采用.NETFramework3.5框架,利用+C#技術,運用C/S和B/S相結合的系統架構來設計完成系統的主要功能,系統開發平臺采用微軟的VisualStudio2010。
1.1系統功能模塊設計
近年來,隨著高校教師隊伍的不斷擴大,整體科研水平不斷提高,在各專業學科領域涌現出了很多學術成果,并據此撰寫了大量的論文及著作,如何對這些寶貴的學術成果數據信息進行有效管理是當下各高校面臨的重要課題。筆者結合本人日常工作經歷,并走訪了各級各類高校相關管理工作人員、專職教師和科研人員,收集了大量需求信息,隨后進行系統功能模塊設計和數據庫設計、程序編碼,最終形成了本系統原形產品,本系統的主要功能有:1、教職工所撰寫的論文及著作基本信息查詢,包括:第一作者姓名、第二作者姓名、第三作者姓名、論文(著作)名稱、ISBN(ISSN)、出版社名(期刊名稱)、成果類別、獲獎情況、總頁碼、封面彩圖、封底彩圖、總字數,本人所完成的字數等信息;2、根據論文及著作成果影響程度和類別,以及本人完成的字數來計算科研積分及工作量折算;3、存儲論文及著作的的目錄,封面、封底圖片,以備日后查詢;4、與現有教師教學工作量計算系統無縫集成,以便匯總教師總的工作量及績效津貼。圖1反映了高校教師論文及著作管理系統的主要工作的流程示意圖,其中教師操作部分使用B/S模式,采用Windows2003server+IIS+.net+MSSQLServer2005平臺,使用C#.net進行編程;管理工作人員操作部分采用C/S模式,使用C#.net進行編程。
1.2論文及著作管理系統的數據庫系統設計
由于高校教師論文及著作管理系統中涉及到的用戶權限和業務一般相對復雜,因此在進行數據庫系統設計時,充分利用數據庫理論和設計規則,同時兼顧硬件系統性能指標等客觀條件,適當容忍較低程度的數據冗余。由于要儲存論文及著作的封面、封底的圖片,故涉及到大量圖像采集和存儲,對系統的存儲功能要求較高,要求采用大容量存儲技術,對所有用戶所提交的各種文檔采用二進制流文件格式統一存放到數據庫中,避免了占用服務器中的大量存儲資源,根據需要,在數據庫中設計若干個數據表,其中論文及著作表(CEC_AUTHORS)主要存儲教職工的論文及著作數據,該表是整個系統的主數據表,其結構如圖2所示,其中著作編號為主鍵,封面、封底字段的數據類型設置為image數據類型。同時,為降低系統運行中出現“臟”數據的幾率,在數據庫系統別設計了以論文及著作表為中心的數據庫關系圖,以保證數據庫數據完整性和一致性,如圖3所示。
2基于績效管理制度的高校教師論文及著作管理系統的實現及性能分析
本系統的后臺數據庫采用SQLServer2005搭建,在B/S部分采用了MVC(Model-View-Controller)三層結構設計模式,即模型-視圖-控制器三層,用以實現程序代碼、業務邏輯以及數據顯示的分離,下面談談對系統的實現和性能分析。
2.1系統實現
在此,筆者以本系統中位于Model層中的數據訪問類的實現和View層功能的實現為例,簡要敘述基于.NETFramework3.5的高校教師論文及著作管理系統的B/S部分的實現過程。由于篇幅有限,在此簡單羅列部分關鍵代碼,希望能拋磚引玉,在MicrosoftVisualStudio2010開發環境下,實現數據訪問公共類的簡要代碼如下。在B/S部分,系統中的用戶登錄模塊負責接受來自UI層的用戶號、用戶密碼、用戶身份等數據,并將這些數據傳送到控制層,控制層根據不同用戶身份數據,返回相應的不同數據給用戶,從而在View層中顯示不同的內容,圖4和圖5展示了根據不同用戶身份返回不同的View內容。在C/S部分,管理員對論文及著作成果信息進行逐一分類、匯總核實,然后根據教職工通過B/S客戶端提交的信息對各成果取得人進行統一入庫歸檔,如圖6所示,其中作者單位和姓名是根據教職工提供的作者教師號自動生成,無需管理人員手動輸入。
2.2系統性能分析
本系統采用基于.NETFramework3.5開發平臺,該軟件項目充分利用AJAX技術創建更有效、更具交互性、高度個性化界面,在B/S部分的Web系統中大量運用母板技術,使整個系統界面統一規范,外觀友好,設計合理,用戶操作起來非常方便。服務器采用WindowsServer2010操作系統,運行穩定,響應速度快,數據庫系統狀態良好,數據準確,同時為方便管理、整合各種數據,便于用戶檢索數據信息,在設計本系統后臺數據庫時,采用了大容量存儲技術,合理、恰當地利用了數據庫系統的事務、存儲過程、和觸發器等技術,優化服務器配置,保證了數據的安全性和一致性,使其滿足海量數據的并發訪問和存儲的需要。
3結論
摘要:本文介紹了我校對計算機硬件實驗課程體系及實踐教學環節進行的改革,建立了“基礎層-應用層-提高層”三層體系結構的硬件課程群實驗體系,并對多層次、系列化的硬件實踐教學模式及訓練模式進行了探討。
關鍵詞:硬件課程群;實驗體系;實驗內容;實踐能力
中圖分類號:G642
文獻標識碼:B
我校計算機專業自99級開始進行了較大規模的擴招,但由于師資力量跟不上、實驗條件和實驗內容相對落后等原因,造成計算機硬件教育存在層次單一、教學內容滯后、理論與實踐脫節等問題,學生普遍存在著“重軟怕硬”的現象,畢業后硬件設計能力差,軟件開發缺少后勁。為提高學生的硬件動手能力,增強畢業生的社會適應性,學院自2002年開始進行計算機硬件課程群建設及相應的硬件課程群實驗體系建設,包括“計算機組成原理”等九門硬件課程及5門相關的實踐課程。本文對我院計算機硬件課程群實驗體系建設及硬件實踐教學環節的改革進行了探討與總結。
1構建科學完整的硬件課程群實驗體系
在原有的課程體系下,我院為本科生開設的硬件實驗教學課程有“數字邏輯實驗”、“計算機組成實驗”、“微機接口實驗”、“單片機實驗”。由于實驗條件的限制,各課程實驗內容相對獨立,綜合性、系統性較差;尚有部分硬件主干課程沒有對應的實驗課程,如系統結構。實驗課程體系存在諸多問題。
(1) 缺乏對學生系統設計能力的培養。傳統的硬件設計和軟件設計相分離的設計方法成為阻礙設計和實現復雜、大規模系統的關鍵因素。系統平臺的搭建、軟硬件的協同設計驗證和軟硬件功能模塊的可重用性已成為現階段設計方法的熱點。培養學生具有系統設計的思想成為當務之急。
(2) 缺乏對學生可編程芯片設計能力及EDA技術的培養。可編程芯片與EDA技術是現代電子設計的發展趨勢,將可編程芯片設計及EDA技術引入實驗教學中是時展的需要。
(3) 缺乏綜合性的實踐課程,學生的創新能力發揮受限。由于實驗條件限制,原有的多數實驗是基于純硬件邏輯設計的,只是在面包板上用器件構建小系統,功能擴展性差;并且只能開設數量有限、技術含量較低的實驗,學生無法開展自主的綜合性設計,無法進行創新能力的培養。
為此,經過充分調研和論證,我院首先從修改03級教學計劃入手,對課程體系中的多門課程進行了調整,同時理順各門課程間的關系,構建起了新的硬件課程體系。該課程體系由必修課程、選修課程及配套實踐三部分組成。必修課包括“組成原理”、“接口技術”、“系統結構”等基礎課程。為適應社會需求,在選修課中刪去原有的“診斷與容錯”等一些過時的課程,增加“數據采集”、“計算機控制技術”、“嵌入式系統”等社會需求較強、實用價值高的應用性課程,同時新開了“模型機設計與組裝”、“硬件綜合實踐”等實踐課程。在07版教學計劃中,又新增了“DSP原理與應用”、“嵌入式系統實踐”等新課程,保證課程體系的實用性與先進性。
硬件系列課程從體系結構上劃分為三個層次:基礎層、應用層和提高層,其課程間的關系如圖1所示。基礎層為“數字電路”與“組成原理”。“數字電路”課程雖然在教學體系上不屬于計算機硬件系列課程,但它是計算機硬件系統的技術基礎,是必修的前續課;“組成原理”介紹計算機的基本組成和工作原理,解決整機概念;通過“電工電子實習”與“模型機設計與組裝”兩門實踐課程,強化學生的硬件動手能力。在應用層中,通過“接口技術”介紹應用層的接口和相關外設,以“嵌入式系統”等四門實用性強的課程作為選修課,每門課程都配有相應的實驗環節,并通過“硬件綜合實踐”、“嵌入式系統實踐”強化學生對基礎知識的掌握和綜合應用。提高層為“系統結構”及“性能測試與分析”實踐課程,通過學習和實踐,能夠使學生比較全面地掌握計算機系統的基本概念、基本原理、基本結構、基本分析方法、基本設計方法和性能評價方法,并建立起計算機系統的完整概念。
在硬件課程群實驗體系建設過程中,突出強調課程體系的系統性和完備性。從第1學期到第7學期硬件實驗不斷線,層次逐步提高,實驗內容銜接連貫。注意各硬件實踐的相互次序和互補,使硬件實踐訓練層次化、系列化,以此來系統強化學生的硬件動手能力。同時調整各課程的開設順序,理順每門課與前導課和后續課之間的關系,從而保證硬件課程體系的系統性和完備性。
注:所有必修課程與選修課程均開設課內實驗,包括驗證實驗(20%)、設計實驗(80%);實踐課程單獨開設,包括綜合實驗(80%)、探索實驗(20%)。
2改革實驗教學內容與模式
計算機硬件系列課程的重要特點之一是工程性、實踐性強。為了使學生在學過該系列課程后具備較強的實際動手能力和計算機應用系統的開發能力,應在實驗教學內容的設置上體現出基礎性、系統性、實用性和先進性,既要重視計算機硬件的基礎內容,又要結合當今電子與計算機的最新發展。為此,我們對該硬件系列課程的實驗教學內容和教學模式進行了改革創新。
2.1優化實驗內容,引進實驗新技術,提高硬件設計的效率和興趣
隨著計算機硬件技術的日益發展,各種各樣的微處理器不斷更新,功能不斷增強,以FPGA為代表的數字系統現場集成技術取得了驚人的發展,嵌入式系統設計也逐步成為主流。為了使學生跟上時代潮流,了解最新技術,需要不斷引入新設備、新技術,提高硬件設計的效率和興趣。如更新的“組成原理”和“系統結構”實驗臺,通過RS232串口與PC機相連,可在PC機上編程并向系統裝載實驗程序,還可在PC機的圖形界面下進行動態調試并觀察實驗的運行,使學生像設計軟件一樣來設計硬件,做到了硬件設計軟件化,大大提高了硬件設計的效率和興趣。“模型機設計與組裝”,將CPLD和FPGA等技術引入,用CPLD來設計復雜模型機。“匯編語言”和“接口技術”補充Windows下設備驅動程序的設計與實現,增加PCI、USB的應用等內容。“系統結構”通過局域網組建小型的微機機群,研究探索多處理機操作系統,試驗并行程序的運行與任務分配調控等功能。為適應當前嵌入式芯片的迅速普及應用,新開設了“嵌入式系統設計”課程設計。針對學生已學過多門硬件課程,但仍不能完成一個完整的、可獨立工作的計算機系統設計問題,新開設了“硬件綜合實踐”,使同學親自體會設計一臺微型計算機系統的全過程。
2.2建立“驗證型-設計型-綜合型-探索型”的多層次實踐教學模式
在實驗教學內容的改革上,本著“加強基礎、拓寬專業、注重實踐、提高素質”的方針,將實驗項目分為4類,即驗證型、設計型、綜合型、探索型,實驗項目由淺入深,循序漸進。在所有硬件必修和選修課程中,全部開設課內實驗。課內實驗由驗證實驗(20%)、設計實驗(80%)組成。所有實踐課程都單獨開設實驗,包括綜合實驗(80%)、探索實驗(20%)。這樣,課內課程中開設“驗證型”和“設計型”的實驗,在后續課程設計中,開設“綜合型”和“探索型”的實驗,形成“驗證型-設計型-綜合型-探索型”的多層次實踐教學模式,系統強化學生的綜合設計和硬件動手能力。
在驗證型實驗中,注重使學生鞏固基本理論,進一步掌握基本概念和基本技能。在設計型的實驗中,注重培養學生的創新意識、設計能力和動手實踐能力。在這一類實驗中,以學生動手為主,教師輔導為輔,只給定實驗的課題及達到的目的,中間過程需學生自己去查閱資料和設計方案,直至最后調試完成。在綜合型實驗中,注重培養學生綜合運用所學知識的能力,使學生受到更為實際、更加全面的科學研究的訓練。綜合實驗的特點是沒有現成的模式可循,學生需要獨立完成硬、軟件設計和調試。在調試過程中,學生自己動手分析解決實驗中出現的問題,雖然有一定的難度和深度,但對學生很有吸引力,能使學生從應付實驗變為主動實驗,不僅提高了基本操作技能,也發揮了學生的主觀能動性和創造性。課程設計的部分內容屬于探索型實驗,學生可以自主選擇感興趣的課題及相關開發工具,寫出設計書,交給指導教師審核后實施。在這一過程中,學生需要查閱大量的資料,培養了學生的自學能力、研究設計能力、獨立分析問題及解決問題的能力和創新能力。
2.3確立“系列化硬件實踐訓練”方案
硬件實踐訓練由“課程實驗-課程設計-綜合訓練-畢業設計”四個系列組成。課程實驗――所有硬件課程都開設。課程設計――在“嵌入式系統”、“組成原理”等重點課程中開設,在這些課程的課內實驗中進行部件或模塊實驗,在課程設計中進行綜合性、創新性設計。綜合訓練――通過“硬件綜合實踐”展開。該課程安排在大四開設,是一門綜合性設計實踐課程,也是對前面所學課程的一個全面應用和總結,在硬件課程群建設中起著“總練兵”的作用。通過讓學生親自設計一臺小型計算機控制系統,包括計算機的各個部件和功能,“麻雀雖小,五臟俱全”,旨在讓學生真真切切感受到如何設計一個可獨立工作的計算機系統,強化和提高學生的綜合實踐能力,培養學生的創新思維和創造能力。畢業設計――每年精選一定數量的硬件畢業設計題目,提供實驗場所、設備及材料,讓對硬件感興趣的同學去實現自己的設計,放飛自己的理想。學生以接近于實際應用環境,完成高質量綜合設計為訓練手段,以掌握計算機硬件結構與應用系統設計作為主要訓練目的,使學生對計算機的整個硬件系統有較全面、較系統的掌握。要求學生能夠根據需要設計出一定規模的計算機硬件應用系統實例,從模板設計、制作、總線的走向、計算機部件選取、工作原理的分析、部件在模板上的部局、部件的焊接、運算能力的調試、結果正誤的判斷分析等流程的設計到具體的制作,直至最后寫出畢業論文,使學生建立系統的概念與工程的概念。
3結束語
上述改革取得了令人滿意的效果。大學生對計算機硬件實驗課程學習的興趣增強了,實驗室開放期間,有更多的學生走進了硬件實驗室。在畢業設計時,有更多的學生選擇了與計算機硬件系統設計和開發相關的課題。學生做完硬件綜合實習和硬件畢業設計課題后,普遍充滿自豪感和成就感,感到硬件設計及底層軟件開發不再可怕。通過這樣的訓練,提高了其綜合設計能力和創新能力,同時也鍛煉了他們的團隊合作精神,步入單位就能直接勝任計算機應用系統設計、開發的工作,實現高校、學生、用人單位等各方面的多贏。同時我們也應該看到,隨著新技術的不斷發展,計算機硬件系列課程及其實驗體系的建設和實驗內容的改革是一項長期不懈的工作,需要不斷完善。
參考文獻
[1] 羅家奇,李云,葛桂萍等. 計算機硬件系統實驗教學改革的研究[J]. 實驗室研究與探索,2007,26(8):98-99.
[2] 武俊鵬,孟昭林. 計算機硬件實驗課程體系的改革探索[J]. 實驗技術與管理,2005,22,(10):107-109.
單片機系統設計是一門實踐性、應用性很強的課程。傳統的單片機系統設計實驗教學,具有:①實驗應用機會少;②缺乏具體的實驗教學內容和完善的考試、考核方法;③驗證性多,創新性少;④實驗教學內容與實踐應用脫節的弊端。這樣的教學模式和方法,很難讓學生完全掌握單片機系統設計的基本原理和開發方法,更不用說培養學生的創新能力。因此,為了培養和訓練學生具備獨立設計簡單的單片機應用系統、編寫系統控制程序的能力和技能,激發學生的創造力,我校在學生完成了《單片機系統設計》的理論課和匯編程序設計、七段數碼顯示、鍵盤掃描、AD轉換、串行通訊等實驗教學后,特開設了為期2周的綜合實踐教學環節。此教學環節讓學生完成一個單片機系統的設計、開發、調試的完整過程,整個綜合實踐教學環節完成后,學生對單片機系統的學習和應用興趣更濃了,而且具備了自行設計、開發簡單的單片機系統的能力。
2任務與要求
利用偉福Lab6000系列單片機仿真實驗系統構成簡單實用的單片機系統,要求如下:
(1)充分應用MCS-51系列微處理器和偉福Lab6000系列單片機仿真實驗系統所提供的硬件資源,自由選題實現一個簡單實用的單片機系統。
(2)要求具備必需的人機接口。
(3)可以選用匯編或C51語言進行控制程序開發。
設計的系統性能如下:
(1)系統運行穩定,具有一定的抗干擾和故障自測能力。
(2)系統設計安全可靠,具有出錯報警和應急關閉能力。
(3)系統精度達到一般民用品的基本要求。
(4)人機接口界面友好、直觀、操作簡單。
另外,我們提供了一些選題供學生拓展思路,主要有:
(1)出租車計價器。
(2)溫度控制系統。
(3)可編程交通燈系統。
(4)PWM電機調速系統。
(5)數字溫度計。
(6)數字頻率計。
3設計范例
3.1PWM電機調速系統
PWM電機調速系統系統包含電機驅動電路和測速電路,兩者構成閉環系統。電機驅動采用脈寬PWM調壓電路,測速電路的核心部件是霍爾元件。霍爾元件是一種磁傳感器。用它可以檢測磁場及其變化,可在各種與磁場有關的場合中使用。在外磁場的作用下,當磁感應強度超過霍爾元件導通閾值BOP時,霍爾元件輸出管導通,輸出低電平。若外加磁場的B值降低到BRP時,輸出管截止,輸出高電平。在直流電機的轉盤上粘貼著一枚小磁鐵,霍爾元件安裝在轉盤附近,每當磁鐵靠近霍爾元件時霍爾元件導通,輸出低電平,遠離時霍爾元件截至,輸出高電平。這樣,直流電機轉動一圈,霍爾元件就會輸出一個脈沖,通過這個原理能夠測出電機的轉速。
PWM是單片機系統中常用的模擬量輸出方法,通過外接的轉換電路,可以將脈沖的占空比轉化成電壓。直流電機的轉速和驅動電壓呈近似線形關系,改變脈沖的占空比,就可以改變直流電機的轉速,閉環工作時,測速電路測得的轉速和給定的轉速相減獲得差值e,根據差值e運用PID增量控制算法獲得控制量,即占空比,通過MCS-51的口線輸出給定占空比的脈沖,再通過轉換電路轉化成電壓來驅動直流電機。系統控制算法采用增量型PID控制算法,如果k時刻電機當前轉速是y(k),給定轉速是r(k),PID控制器輸入信號為e(k),輸出信號為u(k)。
3.2數字溫度計
數字溫度計的核心電路——溫度傳感器調理電路如圖3所示,溫度傳感器采用負溫度系數的熱敏電阻(NTC),NTC的阻值隨著溫度的上升而非線性下降,具體溫度-阻值特性為式中,RT 、 RT0是溫度分別為T、T0 時的電阻值;B為負溫度系數熱敏電阻的材料常數。固定電阻和NTC組成的電阻橋輸出電壓隨NTC阻值的變化而變化,這種變化經過差動放大器的放大后送給AD轉換器轉換成數字量,具體轉換遵循以下公式一般情況下,會事先根據NTC的溫度-阻值特性計算出一張溫度-阻值對應表。根據AD轉換的數字值逆運算獲得當前NTC的阻值,再根據NTC的溫度特性表運用分段查表和表項間線性運算就可以獲得當前溫度值,把當前溫度在輸出設備(如七段數碼管、LCD)上顯示出來就構成了完整的數字溫度計。本范例也可在其他溫度測量的系統中應用。
3.3出租車計價器
出租車計價器是一個較實用的設計范例。出租車計價器包含里程測量電路、實時時鐘電路和人機接口,出租車計價器里程測量的核心部件是霍爾元件,具體電路和圖1的測速電路一樣。在輪胎的轉軸上粘貼了6個小磁鐵,輪胎轉動一圈,霍爾元件就會輸出6個脈沖,對脈沖進行計數就可以獲得輪胎轉動的圈數,圈數乘以輪胎的周長就可以獲得車輛行駛的里程數。
一般情況下,出租車白天和晚上的里程單價并不一樣,因此需要一個實時時鐘來獲得當前時間。DS1307是一個I2C總線的實時時鐘(RTC),在外部電池的供電下,它能提供高精度的年月日時分秒BCD碼時間。另外,它還包含56字節的非易失性SRAM(NV SRAM),可以用來保存系統的設置信息。顯示設備可以采用七段數碼管或LCD,用來顯示當前時間、行駛里程數、里程單價、和行駛里程價格等信息。還需要少量的按鍵或矩陣式鍵盤用于輸入里程單價、開始計價、清零、時間設置等操作。
4實施過程
4.1根據任務與要求進行總體規劃與設計
這個過程包括:
⑴ 課題選擇。
⑵ 硬件模塊的選擇和設計。
⑶ 軟件整體流程的設計。
⑷ 查找各種所需資料。
綜合實踐課題題目是不是新穎,是不是能夠激發學生的創造性和好奇心,直接影響學生實驗的積極性,有的學生覺得做實驗非常無聊,就是因為他們的好奇心和熱情沒有被激發起來。而集知識性、趣味性、創造性于一體,能應用所學知識解決具體問題的綜合實踐課題,是本綜合實踐的最大亮點,也是本教學環節區別于其他教學環節的標志。我們要求學生思考在實際生活中能應用單片機系統技術能解決的具體問題,并且考慮偉福Lab6000系列單片機仿真實驗系統所能提供的硬件資源,選擇一個有自己特色、能在兩周內獨立完成的題目,題目要求新穎,鼓勵創造性的思維,并且能解決實際生活中的具體問題。
受限于實驗條件,硬件設計無法完全按照單片機系統設計的一般方法和標準步驟來實施。在教學過程中,我們要求學生可以根據偉福Lab6000系列單片機仿真實驗系統所提供的硬件資源自主地完成硬件部分的理論設計,也可以不完全局限于此實驗平臺進行理論設計。理論設計完全遵循單片機系統設計的一般流程,學生自己查閱資料,設計硬件電路圖。指導老師對硬件部分的理論設計進行評審后,再根據具體的實驗平臺指導學生完成課題。
軟件設計可以采用匯編語言或Keil C51高級語言開發環境來實現,這兩種軟件開發環境是當前MCS-51系列單片機系統開發的主流環境。根據學生選題的特點,指導學生選擇較為容易實現的開發環境。
4.2根據總體規劃實施軟硬件的開發與設計
這個過程包括:
⑴ 硬件連接。
⑵ 軟件編程。
⑶ 軟硬件聯調。
在這一過程中主要培養學生的硬件設計能力、編程能力和積累軟硬件調試經驗,熟練掌握單片機系統中人機接口的設計、控制算法設計、硬件驅動程序設計,體會理論與實踐之間的差別,對單片機系統的設計與實現由理性認識轉化為感性認識,激發學生的求知欲望,鍛煉學生克服困難解決問題的能力。
4.3交流總結
在2周的綜合實踐中抽出一天時間讓能力較強的學生陳述他的設計思想和設計過程、設計中的難題和解決方法以及自己的心得體會。讓進展不順的學生提出他在設計中沒能解決的難題,全班同學共同討論,集思廣益,找到解決問題的方法。這樣可以使學生互相學習,取長補短,拓寬知識面,活躍思維,能在以后的工作和學習中更好地完成任務。
4.4完成實踐報告及驗收評分
最后兩天是綜合實踐報告的完成階段,在進行了兩周的綜合實踐以后有必要好好地總結一下,把自己在綜合實踐中所學到的知識以文字的形式表述出來,這樣更有助于水平和能力的提高。實踐報告完全按照畢業論文要求書寫,包含中英文摘要、設計任務與要求、系統結構及工作原理、主要單元電路的設計過程、控制軟件的編寫及調試、測試數據及調試中故障分析、收獲和體會、參考文獻等部分。要求學生重點講述清楚故障分析和收獲體會。綜合實踐成績由平時表現、實踐報告、設計成果、創新點4部分組成,成績構成比例是2:3:4:1。
5效果
經過幾年的教學實踐,單片機系統綜合實踐教學環節取得的效果主要體現在以下幾個方面:
(1)讓學生掌握了單片機系統設計的一般原理及其基本的實現過程,實現了從理論向實際的遷移,強化了學生所學的知識。
(2)讓學生掌握了單片機系統硬件、軟件設計的基本方法,具備了軟硬件相結合的系統設計的基本能力和調試經驗。
關鍵詞:智能監控;ZigBee;傳感器網絡
中圖分類號:TP274 文獻標識碼:A 文章編號:1007-9416(2017)03-0058-01
1 ZigBee無線傳感器網絡
1.1 ZigBee簡介
ZigBee技術是目前發展最快的一種短距離無線通信技術,該技術的協議棧復雜度較低,功耗很低,硬件簡單,傳輸速率適中,設備價格極其低廉,支持休眠狀態。通信距離可達百米以上,斷網自組能力較強[1]。表1是ZigBee同其他無線通信技術對比。
1.2 系y總體設計目標
監測系統從車廂監測區域內實時收集溫度、氣壓、濕度、一氧化碳等環境參數,實現對列車車廂內與舒適性密切相關的環境狀態變化的實時觀察,確保列車安全舒適運行[2]。因此,本論文設計了一種基于ZigBee技術的無線數據傳輸網絡系統,實現了對列車環境的實時無線監控。
2 硬件設計
2.1 硬件架構
整個監測系統主要由ZigBee無線通信網絡模塊和基于ARM的數據通信控制器模塊組成。ZigBee無線通信網絡模塊是網絡系統信息采集和傳輸的核心模塊,由協調節點、路由節點和終端傳感器節點組成。
2.2 ZigBee終端模塊設計
無線通信網絡模塊是系統數據通信的核心,由協調節點、路由節點和終端傳感器節點組成,系統三類工作節點協調工作[3]。
(1)在本系統的采集終端中選擇了ZigBee芯片CC2430,C2430芯片內部集成了一個2.4G赫茲的DSSH射頻收發器,并且內置了一個加強型的8051單片機[4]。
(2)為了可靠的采集列車中的溫濕度信息,本系統選擇了高集成度的SHT11傳感器芯片。SHT11芯片在測量時可以保證溫度測量精度為± 0.5oC,濕度在0%~100%RH[5]。
(3)系統選用了MPXA6115A氣壓傳感器來采集列車車廂內的絕對氣壓,可以測量的范圍是15kPa到115kPa[6]。
(4)為了更好地實現列車車廂的信息展示,用了一個2.8英寸的液晶觸摸屏作為列車車廂的空調控制單元,并選取了ADS7843作為控制器。
(5)為了控制車廂內的環境溫度,本系統設計了調速電機控制模塊,終端CC2430處理器接收到控制命令后,通過內部調速程序在P0_0端口輸出信號,經過光電耦合器后,控制調速電機的輸入電流,最終實現對調速電機的控制。
3 控制系統軟件設計
3.1 主程序流程
軟件系統采取了模塊化的設計,通過ARM處理器控制ZigBee網絡中的協調器節點啟動網絡并初始化系統,掃描網絡中的終端節點并等待其加入網絡,在網絡建立后維護網絡的正常運行。
3.2 終端節點程序流程
在網絡節點設備的軟件設計中需要完成的功能有以下幾個部分:網絡搜索和加入、發起綁定請求、數據的發送和接收、空調開關、氣壓調節器和LCD顯示器的控制等。
4 結語
本文在ZigBee通信技術的基礎上,選用多種環境信息傳感器來采集列車中的環境參數,并在網狀拓撲網絡中進行數據的傳輸,實現了對列車環境的智能監控。通過合理的軟硬件系統設計,本系統可以實現系統的可靠運行,可以長時間穩定的工作,在實際的應用中非常廣泛的前景。
參考文獻
[1]李佳.基于ZigBee和GPRS無線傳感器網絡網關的設計與實現[D].南京郵電大學,2013.
[2]董方武.基于ZigBee的汽車空調控制系統[J].電子技術應用,2009(11):118-121.
[3]楊春華.基于ZigBee技術的無線網絡協調器的研究[D].西南石油大學,2011.
[4]楊世超.基于CC2430的ZigBee節點設計及MAC層協議改進[D].上海交通大學,2012.